
D-A124 448 A LOCAL COMPUTER NETWORK IMPLEMENTATION USING ETHERNET 1/2
(U) ILLINOIS UNIV AT URBANA COORDINATED SCIENCE LAB
D J LILJR AUG 82 R-946 N8B829-BB-C-8556

UNCLASSIFIED F/G 9/2 N

Elson Eon 11iI
omhEohhhhhhmhhE
smhhhhEshhhoh
EhhEEmhhhhhhhE
EhhmhhmhmhhhhE
EhhhhhmhhEEohI

I~ w 32

I .1 2 ..

Illa-o- I'w 7
(

1.25 11. 16

MICROCOPY RESOLUTION TEST CHART

t4ATIONAL BUREAU OF STANDARDS- I963-A
2 2C

I.

":

t- -'

• ,z ' 1 *1

REPORT R-94 AUGUST,1982 UILU-ENG 82-2212

X _TCOORDI/IATED SCIENCE LABORATORY ,

A LOCAL COMPUTER NETWORK
IMPLEMENTATION USING ETHERNET .

4

_ aUNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
- 83 02 015 027

UNCLASSIFIED
LSSECURITY ASIFICATION OF THIS PAGE MWoft Date Entere_0_:- READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFECOMPETNGORM
I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT*S CATALOG NUMBER

4. TITLE (ad Subtitle) S. TYPE OF REPORT & PERIOD COVERED

A LOCAL COMPUTER NETWORK IMPLEMENTATION Technical Report
USING ETHERNET 6. PERFORMING ORG. REPORT NUMBER

R-946; UILU-ENG 82-2212

7. AUTHOR(&) S. CONTRACT OR GRANT NUMBER(s)

- US NAVY N00039-80-C-0556
David John Lilja

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK
AREA & WORK UNIT NUMUERS

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

II. CONTROLLING OFFICE NAME ANO ADDRESS 12. REPORT DATE

August, 1982
VHSIC 13. NUMMER OF PAGES

106
14. MONITORING AGENCY NAME & AOORESS.'iI dilffaoran from Controlling Office) IS. SECURITY CLASS. (.1 this report)

r Unclassified

ISa. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

I. DISTRIBUTION STATEMENT (of tli Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20. It different from Report)

U

1S. SUPPLEMENTARY NOTES

I$. KEY WORDS (Continue on reveree aide if necoere and identify by block number)

Local networks
Ethernet

I*. ABSTRACT fConlnuo an reverse aide if necesary and ildenify by block nrumber)

" .An Ethernet is used to connect an HP 3000 computer with a VAX 11/780
computer to allow the transfer of files from one computer to the other.

S".A user logs in on the VAX computer and uses a one-line command to send a
file to or retrieve a file from the HP 3000 computer. Files are transferred
between the'user's directory on the VAX and either a specified directory or
a public "network" directory on the HP 3000. The file transfer system uses
a scheme of positive acknowledgment with retransmission to prevent transmission
errors from corrupting the file.

DD I iII 1473 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE IMen eic EntOred)

UILU-ENG 82-2212

A LOCAL COMPUTER NETWORK IMPLEMENTATION USING ETHERNET

by

David John Lilja

This work was supported in part by the General Electric
IFellowship in Electrical Engineering and in part by VHSIC under

Grant US NAVY N00039-80-C-0556.

Reproduction in whole or in part is permitted for any
purpose of the United States Government.

Approved for public release. Distribution unlimited.

,':te 14J

I Orin &e .it - mablity Codes

Irl t spoolal

iQ

,

i~i A LOCAL COMPUTER NETWORK IMPLEMENTATION USING ETHERNET

BY

DAVID JOHN LILJA

B.S., Iowa State University of Science and Technology, 1981

THESIS

,. Submitted in partial fulfillment of the requirements

4 for the degree of Master of Science in Electrical Engineering
in the Graduate College of the

University of Illinois at Urbana-Champaign, 1982

4 I Ilini

,U Urbana, Illinois

V

iii

* A LOCAL COMPUTER NETWORK IMPLEMENTATION USING ETHERNET

David John Lilja, M.S.
Department of Electrical EngineeringUniversity of Illinois at Urbana-Champaign, 1982

Advisor: Professor Edward S. Davidson
U

ABSTRACT

An Ethernet is used to connect an HP 3000 computer with a VAX

11/780 computer to allow the transfer of files from one computer to the

other. A user logs in on the VAX computer and uses a one line command

*to send a file to or retrieve a file from the HP 3000 computer. Files

are transferred between the userts directory on the VAX and either a

specified directory or a public *network" directory on the HP 3000. The

file transfer system uses a scheme of positive acknowledgement with

retransmission to prevent transmission errors from corrupting the file.

-.

.,.•,... -,•-. ...

.. .

iv

.7. ACKNOWLEDGEMENT

I would like to thank my thesis adviser, Professor Edward S. David-

son, for his help and advice in preparing this thesis. Also deserving

of thanks are the following people: Larry Hanes and Dick Norton for

helping me to understand the VAX, Bill Rogers for his help in taming the

HP 3000, Howard Pollard for being able to answer an endless barrage of

questions, Steve Yates for helping me maintain my sanity through the

entire process, and my parents for their continued support and

encouragement throughout my academic life.

I1

I. v

TABLE OF CONTENTS

r 1. INTRODUCTION ******************........ 1
1.1. Ethernet Description 1
1.2. Levels of Protocol 41

2. HOST TO CONTROLLER COMMNICATION 6
2.1. General Host/Controller Communication 6
2.2. Using the VAX 11/T80 as a Host 10
2.3. Using the HP 3000 as a Host 12
2.41. The PACKET Program o.........*........*... 18

3. THE FILE TRANSFER PROTOCOL oe 20
II3.1. Packet Types and Format 20

3 .2. File Transfers 23

41. COMMUNICATION INITIATION AND THE USER INTERFACE 27
41.1. System Organization 27
4I.2. Fia-e Transfers From the VAX to the HP 3000 30
4t1.3. File Transfers From the HP 3000 to the VAX 32
41.4. The Network Daemon 341
14.5. System Error Codes 341
41.6. Packet Size for File Transfers 36

L5.1. Suggestions for Improvement 39

* .Appendix 1. The PACKET program for the VAX 112
-Appendix 2. The PACKET program for the HP 3000 511

Appendix 3. The file program for the VAX 66
Appendix 14. The network daemon for the HP 3000 85
Appendix 5. Listing of STARTNET.LILJA.SYS 1011

REFERENCES 106

vi

LIST OF TABLES

Table 1. Controller Comwmnd Bytes 8

Table 2. Status Byte Decription................................ 8

Table 3. Packet Types . .. 22

Table 4i. System Error Codes 3

r-A

7- --1. -

vii

I. LIST OF FIGURES

-Figure 1. Controller to HP 3000 connection 17

Figure 2. Packcet format 21

Figure 3. An example of the file transfer protocol 2~4

Figure 4i. System organization for file transfers 29

.. I,, ,. a.. ~ nzm
MRODUCTIO

Over the past several years there has been a great deal of interest

in interconnecting many geographically distributed computer systems

- using computer networks. These networks range from long-haul networks

connecting computers separated by thousands of miles to multiprocessor

computers which are separated by less than a few meters. Local computer

networks are generally considered to be those with separations on the

order of a few kilometers or less and are usually contained within one

I!building and used by one organization[1]. Local networks are attractive

- because they allow expensive system resources, such as printers and

secondary storage devices, to be shared among several independent com-

puter system. With the rise in popularity of personal computers, a

great deal of work has been done on local networks to connect these
* .,

s- mall systems and produce some standardsE2J.

This thesis describes an implementation of a local computer network

that allows the transfer of files from one of the host computers on the

network to another host. This local network uses an Ethernet to inter-

-connect a VAX 11/780 computer and a Hewlett-Packard HP 3000 computer.

The system allows a user to log in on the VAX and use a simple one line

command to transfer any file to the HP 3000 or receive any file from the

HP 3000.

1.1. hSnt Desription

L" Ethernet is a registered trademark of the Xerox Corporation used to

refer to a particular method of implementing a local computer net-

" 12 .. ' . '" -i' , ,- - . - " - .- , , . " " -" ,. . % . -: - - -: "

2

work[3]. This Ethernet employs packet broadcasting with several sta-

tions connected together by a common transmission medium. Every station

on the network can receive every transmission of every other station. A

station is any device, such as a computer or a printer, that can commun-

icate on the network. The Ethernet concept is predicated on the assump-

tion that computer traffic is bursty. Thus several stations can effi-

ciently share the common transmission medium using time-division multi-

plexing. This concept of packet broadcasting originated with the Aloha

Network which was developed at the University of Hawaii to connect

together several computer sites with radio[4]. Ethernet is classified

as a "carrier-sense multiple access with collision detection" (CSMA/CD)

network which means that multiple stations are able to sense the state __

of the medium before transmission and also detect if another station
is

causing interference.

The Ethernet has a central interconnection medium with network
con-

trol distributed among the stations. This interconnection medium is

completely passive and is usually a standard coaxial cable, referred to

by the developers at Xerox as the "ether." The name "ether" is from the

historical ,luminiferous ether" through which electromagnetic radiation

was once thought to propagate. The topology of this cable must be an

unrooted tree. The tree requirement prevents multiple paths between any

two stations on the cable so no transmitted packet can interfere with

itself. It is unrooted in the sense that the cable can be extended in

any direction by simply tapping into the cable at any point. The ends

of the cable must be properly terminated with a passive resistance whose

i -. -- . .--- . - .. ' ,. .. -. .
..,

o U value is the same as the nominal cable impedance to prevent echoes and

reflections.

Access to the network is shared among the stations on a contention

basis. When a station wants to transmit a packet, it first listens to

the ether to see if it is already in use by another station. If it is

in use, the new station simply waits until the other packet is finished

transmitting. When the ether is clear, the station waiting to transmit

seizes the ether and begins transmitting its packet. This sending sta-

*tion monitors its own transmission to make sure that it is not colliding

with another station trying to transmit at the same time. If a colli-

sion is detected, each station aborts its transmission and waits a ran-

dom period of time before attempting to retransmit. Once the station is

able to seize the ether without a collision, it transmits its entire

packet.

*Each station on the network is assigned a unique eight-bit station

address that is used by the other stations to specify the desired desti-

nation of a packet. Using eight bits for the address limits the number

of stations on the network to 256. In practice, most Ethernets limit

• -the number of stations to 255 and use one of the addresses, usually the

zero address, as a broadcast address. Normally a station examines the

destination address of every packet on the ether, but it will respond

only to its own address or to the broadcast address. Broadcast is use-

ful for sending all of the stations the same packet, such as time of day

t: information or a system message. In most Ethernet systems, broadcast

messages are not acknowledged by the individual stations.

I1

F' Reliability in Ethernet is based on simplicity of design. By hav-

ing a passive central interconnect and distributed control, if one sta-

tion should go down for some reason, it can be disconnected with no

effect on the rest of the network, except, of course, that the services

provided by that station will no longer be available. Due to the aim-

plicity of this system, packets are correctly delivered to their desti-

nations with only a high probability of success. Some packets will be

lost due to collisions with other packets, interference from electromag-

netic noise, and being discarded by the intended receiver. Error con- '

trol for packet transmissions must be dealt with at a higher level and

is not a concern of this low-level Ethernet protocol.

1..Levels _Qr Protocol

As with most complex systems, this computer network is best

developed at several different levels with each level being logically

distinct from the others. There are basically four different levels of

protocol used to provide communication between the two computers on this

network. The lowest level, which is the Ethernet protocol described

above, is implemented in a microprocessor based controller, with one

controller required for each host. The remaining three levels of proto-

[I col are -implemented entirely in software on the host computers and

represent the main work of this thesis.

The second level of protocol, the host to controller communication

protocol, is concerned with how each host sends commands to the slave

controller and how the host receives packets from the Ethernet that have

been buffered within the controller. The next level of protocol is the

7 7_

file transfer protocol which is used to effect the actual transfer of

files between the two host computers and provides the error control

mechanism that is missing from the lower-level Ethernet protocol. The

S- highest level of protocol used in this network communicates with the

user to allow an easy mechanism to transfer files. Within this level is

a sub-protocol that initiates communication between the two host comput-

ers before a file can be transferred. When all of these levels are put

together, a user can simply log in on the VAX and, using a simple com-

r : mand, can transfer files to and receive files from the HP 3000.

r

L. .-.

%6

The Ethernet concept requires each machine on the network to have

an intelligent controller to interface with the ether. This controller

* - can be the host machine itself, but it is desirable to have a separate

device dedicated to the network connection. This prevents the host from

being burdened with the low-level protocols of the network and allows it

* to concentrate on higher-level protocols and User processes.

* This separation of host and network controller requires that some

communication link exist between these two devices. This link could use

* a dedicated parallel input/output port or a simple serial interface.

Also required is the existence of some protocol for communication

between the two devices. The complexity of this protocol will vary

depending upon the computational power and the relative speeds of the

host and the controller.

The local network described in this thesis Uses a network con-

troller designed and built by Joseph Ayala at the Coordinated Science

Laboratory(5J. This controller uses a microprocessor for its basic

intelligence and a specially designed board for the bit transfers on the

ether. The controller is connected to the host computer with a standard

RS232 serial interface line and appears to the host as a terminal. By

using this standard interface, the controller is very portable and can

be easily moved to another host with little or no modification. The

penalty for this portability is the relatively slow speed of the serial

7

transfers over the communication link, which in this case is limited to

9600 baud.

The controller is configured in a "null modem" fashion, thereby

allowing it to be connected directly to the terminal ports of most com-

puters without swapping the transmit and receive wires. The controller

requires the DSR (data set ready) signal from the host to be active, but

it can be used with three wire systems by connecting pins 6 and 20

together on the 25-pin host-to-controller EIk connector. This jumper

connects the controller's DTR (data terminal ready) signal to its DSR

connection and thus eliminates the need for the host to supply the DSR

signal.

The communication protocol designed into this controller requires

*the host to initiate all communication by sending a single byte command

*with the controller always responding by returning two bytes to the

host. This initiation responsibility requires a program to be running

On the host to communicate with the controller. That is, the controller

does not functionally look just like a terminal to the host, but

- requires a special intelligent process to be running on the host.

Within this protocol, there are four basic commands that the host

can issue to the controller. These commands are shown in Table 1. The

enquiry command (ENQ) causes the controller to return its station

address byte and its current status byte. The station address is the

* ~ unique eight bit network address to which the controller will respond

when there is a packet sent on the ether. The status byte indicates the

current status of the controller itself. The bit format of the status

..*

8

Table 1. Controller Command Bytesj

Command Hex Code Description

ENQ 05 Enquire
SEND 11 Send a packet
SOH 01 Start at header
ACK 06 Acknowledgement
REC 12 Receive a packet
NAK 15 Negative acknowledgement
CAN 18 Cancel last receive request

byte is shown I>Table 2. This command is Useful for initializing the

station address in the host's software and for checking the status of

the controller. Also, since the controller will not respond if it is

not turned on and operating, ENQ can be used to test this condition.

Once set, the status bits can only be reset by a manual reset of the

controller. This fact limits the usefulness of ENQ. The software

developed in this research actually uses ENQ only to initialize the sta-

Table 2. Status Byte Description

Bit no. Meaning when logic 1

0 Always 0.
1 Transmit aborted due to excess Collisions.
2 Receive aborted due to "cancel" command.

.:T3 Command from host not recognized.
4Receiver overrun - error on communication link to host.

5 Checksum error in the received packet.
6 Received packet did not contain multiple of 8 bits.
7 Received packet exceeded 10241 bytes in length.

• ;. tion address and to test if the controller is turned on and operating.

The send comnd (SEND) prepares the controller to send a packet

over the not. The packets can be a minimum of two bytes in length (for

the source and destination addr6ee)0 and a maximum of 1024 bytes (lim-

ited by the 31ZG Of the buffer .within the controller). The sending con-

troller hardware appends a two byte CRC (cyclic redundancy code) check-

sum to the packet, but this is unavuilable to the host. After receiving

a SEND byte, the controller responds with a *start-of-header" byte (SOH)

and a null byte (to pad its response to the standard two bytes). The

host then sends the two byte length of its packet, low byte first, and

waits for an acknowledgement byte (ACK). When the ACK arrives, the host

~sends its entire packet to the controller which buffers it and transmits

it when the other is clear. Note that the SEND command is required once

r. 9

• for each packet to be sent.

Sti To receive a packet from the net, the host must first issue the

receive (REC) command. This causes the controller to listen to the

ether, waiting for a packet with its station address or the broadcast

t rdstation address. When a packet directed to it is received, the con-

troller reads the packet into its buffer and informs the host with

Ss teither an packeebu t his is uhe tcket was received correctly,

or a negative acknowledgement (NAK) if the packet was damaged. The

host tan then either read the packet or cancel the receive request. To

read the packet, the host sends the SOH byte to the controller, which

then responds with the two byte lenthe low byte first. The host fol-

eelow with an ACK byte causing the controller to send the entire packet

* tewiigfrapaktwt t"tto adeso h racs

staton ddres. hen paket ireted o i is ecevedthecon

10

to the host and return to its idle state waiting for the next command.

If instead the host wants to cancel the receive, it can send the con-

troller a cancel command (CAN) which returns the controller to its nor-

mal idle state and makes the received packet unavailable to the host.

Note that the REC command must be issued once before each packet the

host expects to receive.

This simple protocol must be strictly followed for proper transfers

to take place between the host and the controller. Any deviation from

this protocol may confuse the controller and cause it to "hang" in an

indeterminate state. It then must be reset manually.

A VAX computer running under the UNIX timesharing operating system

is used as one of the hosts in this local network. UNIX is written

mainly in the programming language C and allows user programs written in

C to interface directly with the operating system[6J. This capability

allows the user a great deal of flexibility in interfacing nonstandard

devices, such as the network controller, to the computer. UNIX treats

all input/output requests as accesses to a file, specifically, requests

to access terminal ports are treated exactly as requests to read or

write data on disc files. This convention allows one standard interface

between the user's program and the operating system.

As mentioned previously, the controller connects to the host

through a standard terminal port. To access this port, the user program

must open it using the "open" procedure call available in the btandard

11

input/output library "<stdio.h>."E7 This procedure expects as parame-

ters the name of the port and the type of access required. The name is

specified as "/dev/ttyx" where x is the terminal port number to which

,- the controller is connected, and the access type is the integer 2 which

specifies read/write access. This procedure call returns an integer

which is then used to identify the port in subsequent read/write

requests.

After the port is opened, it must be configured using the "set ter-

minal options" procedure (atty) available in the "<sgtty.h>" library[7].

This procedure allows the user to change default options in the terminal

driver. For the network controller the options are charfged so that the

3 input and output speeds are set to 9600 baud and the mode is selected as

RAW and ANYP. RAW means that all characters are passed to and from the

port untouched with no processing done on the characters and no special

3characters, such as "break," being recognized. The ANYP flag means that

any parity is allowed, i.e. the parity bit is ignored.

Once the port is opened and configured, the user's program can read

- and write to the port using the "read" and "write" procedures available

in the standard C input/output library. These procedures allow the pro-

gram to transfer many bytes at a time from a buffer within the program

to the port and to read many bytes from the port into the program's

• buffer. In most cases, single byte transfers are the simplest to imple-

ment and are not much slower than multi-byte transfers since UNIX

already buffers the port transparently to the user.

12

It should be noted that before the port can be properly configured,

the user must make sure that no other process is running on that port.

Specifically, UNIX normally has a process called "getty" running on each

terminal port[7]. This process initiates the login procedure when the

port is used for normal interactive sessions. This "getty" process ties

up the port and prevents normal access to the controller. Also, since

the network controller is not an interactive terminal, the "getty" pro-

cess will not respond correctly to the controller's protocol. Conse-

quently, the process must be removed by the system management from any

port to which the controller is to be connected. Once this is done, the

port can be opened and configured as described above.

Z.1. Using th B 3= A& A &At

The other host computer used in this local network is a Hewlett-

Packard HP 3000 running the MPE (Multi-Programming Executive) operating

system. Systems programming on the HP 3000 is best accomplished using

the Hewlett-Packard language SPL (Systems Programming Language) since it

allows the most direct interface to the operating system[8]. As in the

VAX, the HP 3000 treats all input/output requests as accesses to a file.

Thus data transfer to and from a terminal port is accomplished in the

same manner as data transfer to and from a file.

The software terminal drivers on the HP 3000 are optimized to work

with Hewlett-Packard terminals and present a few problems when trying to

interface non-standard devices to the terminal ports. The drivers asso-

ciate a record size with each terminal which specifies the maximum size

of each transfer between the' terminal and the computer. Each line is

13

delimited by a carriage return or by this maximum record size.* If the

- record size of the terminal is specified to be greater than eighty char-

actors, then the driver uses an "enquire-acknowledge" protocol for all

- transfers to the terminal. This means that the computer will send out

an enquire byte (ENQ) to the terminal before it transfers any informa-

tion. It will then wait for an acknowledgement byte (ACE) indicating

* . that the terminal is ready. This protocol is necessary to prevent the

computer from overwhelming slow terminals with too much information at

once. Unfortunately, the network controller does not respond correctly

to this protocol.

Another problem in the terminal driver is that whenever the Com-

puter expects input from the terminal, it sends out an ASCII 'DC1" byte.

This is supposed to alert the terminal that it can now send its informa-

-tion to the computer. The problem in the network controller is that

this byte is interpreted as the SEND command and sets up the controller

to send a packet over the net. Obviously, this is not compatible with

* the intended use of this byte by the terminal driver.

- Both of of these problems must be eliminated before the controller

can be used with the HP 3000. One solution would be to reprogram the

microcomputer inside the controller to respond correctly to this proto-

Col. While this could be done relatively easily, it is not a very good

solution because the controller would no longer be portable. A better

solution, described below, is to eliminate both problems and allow the

f User's program to handle its own protocol. This solution was adopted in

this design.

L1

The enquire-acknowledge problem is eliminated by specifying the

record size of the terminal port to be fewer than 80 charac ters when the

port is opened. The "DC1 U problem is eliminated by specifying the ter-

minal to be type 18. This terminal type is not documented in the HP

3000 manuals and the information regarding type 18 terminals was

obtained through the courtesy of the Hewlett-Packard Company. Type 18

can be specified by using either the MPE intrinsic procedure FCONTROL to

allocate the terminal to the program as type 18, or by specifying type

18 for the required port in the system configuration table. Using this

terminal type effectively eliminates the built-in protocol in the termi-

nal driver.

Before the controller can be accessed by the user's program, the

terminal port to which it is connected must be opened using the FOPEN

intrinsic[9J. The required parameters are a bit string indicating the

file type, another bit string indicating the access options, an integer ;

specifying the record size, and the name or logical device number of the

controller's port. This procedure call returns an integer which is then

used to identify the file in subsequent accesses. Once the port is

opened, it must be further configured using the FCONTROL intrinsic to

select certain options. This intrinsic is used to turn off the

4 automatic echo of input characters; disable the input timer; disable

block mode transfers (part of the enquire-acknowledge protocol); enableK binary transfers (to pass all eight data bits); and disable the parity,
r treating each bit as a valid data bit. Also, the FSETI4ODE intrinsic

V must be called to inhibit the automatic carriage return/line feed

- .- . - - _- E -. '. .;' .'..:.
""

. . , , _ , .-..- -.-. _ - , . , : . . . ,

E

15

i sequence after each input from the controller. After all of this is

done, the controller is ready to be accessed.

The MPE operating system provides two intrinsics to read and write

files -- FREAD and FWRITE. Each of these allow the user to specify the

file number, the buffer to be used (this buffer must be supplied within

the user's program), and the number of bytes to be transferred. FWRITE

also allows a carriage control byte to be sent with each transfer. This

should be specified as *%3208 which means that no carriage control

should be sent. If the multireoord option was specified in the access

options parameter of the 7OPEN call, then the number of bytes

*transferred does not have to be fewer than the specified record size.

The read or write will simply transfer as many bytes as are requested in

the procedure call. The multirecord option effectively circumvents the

80 character limit set above to avoid the enquire-acknowledge problem.

Packets up to the maximum length allowed by the controller can then beU
* *sent and received by the HP 3000.

The first problem encountered in reading from and writing to the

controller is that the controller responds too quickly. That is, after

*a command is sent to the controller, it responds before the program run-

.. ning on the HP 3000 can execute the read procedure. This problem arises

here since the computer does not automatically buffer data coming from

terminals unless it is already expecting some form of input. The solu-

tion to this problem is to set up the read request before sending any

(: command . to the controller by specifying the "no-wait I/O option" in the

access options parameter of the FOPEN intrinsic. To execute this

L2

16

intrinsic with this option, however, the program must be put into

"privileged mode" using the GETPRIVMODE intrinsic. After the FOPEN is

*executed, the program can return to its normal mode by executing the

GETTJSERMODE intrinsic.

Now to read and write to the controller, the program must first

execute the FREAD. This will immediately return control to the calling

procedure which should then execute the FWRITE to send the command to

the controller, followed by a call to the IOWAIT intrinsic to finish the

read. The result is that the computer is waiting for the controller's

response even before the command is sent to the controller. The rapid

response is then automatically buffered by the computer to be

transferred to the program via the IOWAIT call.

A problem encountered when using this procedure is that the program

cannot set up a read followed by a write to the same file without an

*. intervening call to IOWAIT. An IOWAIT here is improper since no read

data would arrive until the write has been issued. The obvious solution

is to use two different files, one for read requests and the other for

write requests. However, MPE will not allow the same terminal port to

be referenced by two different files simultaneously. The final solution

is to use two different files, each referenced to a physically separate

terminal port. Unfortunately, now two ports are required at the HP 3000

for connecting the Ethernet controller.

To connect the controller to two separate ports, a special connec-

tor has been fabricated. The wiring for this connector is shown in Fig-

ure 1. Notice that the transmit data and receive data wires (pins 2 and

17

to

CONTROLLER HP 3000

PIN # "CONT. XMIT."

RTS4 N

CTS5
GND7
DSR
DTR

1z

"CONT. RECVM

PIN #

3 DATA OUT

7 GND

Figure 1. Controller to HP 3000 connection

18

3) are swapped from the controller's connector to the connector on the

computer. This swap is necessary because the terminal connection block

on the HP 3000 is also configured in a null modem fashion. Using this

connection arrangement requires the controller to occupy two terminal

ports, one for sending data to the controller and the other for reading

data from the controller. While this arrangement has its disadvantages,

it seems to be tile best solution available without changing the program

within the controller itself.

21M. PACKE P roar&a

As a demonstration of the host to controller communication proto-

col, the program PACKET was written to allow thie transmission of packets

between the two hosts. A version of this program is written in C to run

on the VAX computer (see Appendix 1) and another version is written in

SPL to run on the HP 3000 computer (see Appendix 2). The program allows

the user to execute all of the commands available to the controller

(i.e. SEND, REC, ENQ, and CAN), and allows packets to be sent from a

terminal on either machine to a terminal on the other machine.

When the program is run, it first executes the ENQ command to

determine if the controller is connected and functioning and to initial-

ize the station address within the PACKET program. It then prints this

address on the terminal and requests the user to supply the station

address of the controller on the other machine. After this initializa-

tion process is completed, the program prints a menu of available com-

mands and requests the user to enter the desired command.

19

The commands available are 'send a packet," 'receive a packet,"

"enquire" (executes the enquire command), "cancel" (executes the cancel

command), *help" (prints out the list of commands), and "quit." To send

.4 a packet, the user is prompted to enter the packet from the terminal,

terminated by a carriage return. This packet is then sent out over the

* . net. For each packet that is to be received, however, the destination

- . controller must be put into the receive mode by using the receive com-

-and any time before the packet is sent. When the packet is received,

it is simply displayed on the terminal and discarded. If the controller

is not in the receive mode, it does not monitor the ether and all pack-

ets are simply ignored.

iWhile this program is relatively simple, it does demonstrate the

use of the low level host to controller communication protocol and the

feasibility of sending packets on the net. It is also useful as a tool

*to debug more sophisticated network protocols by allowing the user to

monitor packet transmissions on the ether. This monitoring is done by

running the PACKET program and repeatedly executing the receive command

for each packet that is to be received. This program forms a basis for

the more complicated programs to follow.

S.'

20

3.. ~UL~TRANSFER PROTOCOL

The file transfer protocol builds on the previous host/controller

communication protocol to provide for the orderly transfer of files as a -

sequence of packets. This level of protocol is tolerant of transmission

errors and damaged packets and provides a mechanism for recovering from

these errors. This mechanism is known as a stop-and-wait protocol with

positive acknowledgement and retranSM1ssion[13. What this means is that

the sender transmits a packet and waits for the receiver to acknowledge

correct reception before sending another. If the receiver never ack-

nowledges the packet, perhaps because it was damaged or never received,

the sender times out and retransmits the packet. The receiver only ack-

nowledges the correct reception of packets knowing that unacknowledged

packets will be retransmitted by the sender after the time out interval.

This protocol provides a simple, relatively error-free method for

transmitting files.

P.. acket Types £BSI LQCML

All of the packets used in this protocol have the same format,

shown in Figure 2, which uses a six byte header to provide the informa-

tion required in each packet. The first two bytes of each packet con-

sist of the destination and source addresses with the destination

address first.* The use and ordering of these two bytes is determined by

the Ethernet definition. The controller hardware expects to find the

destination address in the first byte. The third byte contains a number-

that identifies the packet type, described below. The fourth byte is a

sequence number that identifies each packet to prevent the receiver from

." " , •-.. . . :'- - : -

S . -

21

BYTE 0 1 2 3 4 5 6 N N+I N+2

BITS 1 8 8 8 8 16 .. 16

CHECKSUM

DATA

i LENGTH OF DATA (HIGH:LOW)

SEQUENCE NUMBER

*I PACKET TYPE

SOURCE ADDRESS

DESTINATION ADDRESS

SYNC BIT

Figure 2. Paoket format

L

I22

accepting duplicates in the event that a packet is retransmitted. The

remaining two bytes in the header contain the number of actual data

bytes in the data portion of the packet, with the high order byte first.

From zero to 1018 actual data bytes can be inserted in the packet making

a maximum packet length of 1024 bytes (six header bytes plus 1018 data

bytes). In addition, the controller hardware appends two bytes to the

end of every packet. These two bytes provide an error-detecting check-

sum, but they are completely unavailable to the host computer's

software. The Osync' bit is used by the hardware to synchronize the

receiver at the start of the packet transmission and is also unavailable

to the host.

There are seven different types of packets that are used in this

system, four of which are used in this file transfer protocol and three

that are concerned with the communication initiation protocol. These

seven packet types were defined specifically for this network implemen-

tation and their meanings are summarized in Table 3. The ACKFILE type

Table 3. Packet Types

Type Code Description

ACKFILE 1 Packet received correctly
NAKFILE 2 Requested file on HP 3000 does not exist
DATAFILE 3 Packet contains file data
ENDFILE 5 Indicates end of file
ENDREPLY 6 Acknowledges the ACKFILE of the ENDFILE
SENDFILE 7 Prepares receiver to send a file
RECFILE 8 Prepares receiver to read a file

I°

23

Pis an acknowledgement packet used by the receiver to acknowledge the

correct reception of a packet. DATAFILE is used by the transmitter to

identify packets that contain the actual file data. The ENDFILE and

* ENDREPLY packet types are used in the end sequence described below. The

SENDFILE, RECFILE, and NAIFILE packet types are used to initiate commun-

*: ication between the two hosts and their use is described in the next

chapter.

3.2 W&Tra nfers

As mentioned above, files are transferred from the sender to the

receiver as a series of consecutively numbered packets. This protocol

is based on the "Ethernet File Transfer Protocol" described in (3] with

Usome modifications as suggested in [10]. This system only allows one

file at a time to be transferred between the two hosts. Packets

transmitted between other stations can be multiplexed on the ether since

each station controller ignores packets intended for other destinations.

That is, there can be no multiplexing of file transfers to the same des-

tination (but the ether can be multiplexed for transfers between dif-

- ferent destinations) and there can be no multiplexing of file transfers

if two or more of these transfers involve the VAX or the HP 3000 in any

way.

After the initial communication is established between the two com-

puters, this file transfer system is invoked to perform the actual

transfer. An example of this protocol is shown in Figure 3. The sender

sends DATAFILE packets consecutively numbered from one (modulo 256,

since the sequence number field in the header is eight bits wide).

__ •ii _]

24

SENDER RECEIVER

DATAFILE 1 ->

4 - ACKFILE 1
DATAFILE 2 -X

-TIME OUT-

DATAFILE 2 -

+ - ACKFILE 2
DATAFILE 3 -

X- ACKF1LE 3
-TIME OUT-

DATAFILE 3 -:
4-;--,---- ACKFILE 3

DATAFILE N - "
4 - ACKFILE N

ENDFILE N+1 -:
4-",ACKFILE N+1

ENDREPLY N+2 -)

DONE DONE

Figure 3. An example of the file transfer protocol

25

Those DATAFILE packets have the format previously described with the

*data" portion containing the actual file data. After each packet is

transmitted, the sender waits for an ACKFILE packet from the receiver

with a matching sequence number, thereby acknowledging the correct

reception of the packet. These ACKFILE packets have an empty "data"

portion and consist only of the heacar - tea and the controller-

generated checksum. If an acknowledgement is not received within a set

-,."period of time (five seconds), the sender retransmits the same packet

and again waits for the corresponding acknowledgement. The sending pro-

gram will retransmit the same packet up to MAXCOUNT times, where MAX-

COUNT is a parameter in the program that can be changed by recompiling

the program. If there is no acknowledgement after MAXCOUNT transmission

attempts, the sender simply assumes that the remote receiver is dead and

aborts any further transmissions to that destination.

The receiver, meanwhile, waits for some packet to arrive on the

net. Each packet is examined to make sure that it is undamaged and has

-i the proper sequence number, that is, that the packet sequence number

matches the expected sequence number. This expected number is simply

. one more than the sequence number of the last correctly received packet.

If this is the case, the receiver accepts the packet, stores it in the

file, acknowledges the packet, and increments the expected sequence

number. If the packet is undamaged, but the sequence number is one less

than the expected, then the packet is acknowledged and discarded. The

['![assumption is that the previous acknowledgement for that packet was lost

or damaged in transmission and needs to be retransmitted. All other

-.

26

packets (those that are damaged or have an improper sequence number) are

simply ignored, the receiver knowing that the sender will shortly

retransmit any packets that have not been acknowledged.

After all of the data has been transmitted, the sender sends an

ENDFILE packet with the next consecutive sequence number to indicate to

the receiver that the file transfer has been completed. This ENDFILE

packet consists only of header bytes and the controller-generated check-

sum and has an empty "data" portion. The sender then waits for the

receiver to acknowledge this ENDFILE with the standard ACKFILE packet.

Upon receiving the ENDFILE, the receiver acknowledges it and then waits

for a period of time. After receiving this acknowledgement, the sender

transmits an ENDREPLY packet, which also has an empty "data' portion,

and is now done with the entire file transfer. The waiting receiver

receives this ENDREPLY and then it is also done with the file transfer.

This relatively complex end sequence makes it practically certain

that both the sender and the receiver agree on whether the file has been

transmitted correctly. If the ENDFILE packet is lost in transmission,

the sender will simply time out and retransmit it as it would any other

packet that has not been acknowledged. If the acknowledgement of this

ENDFILE packet is lost, the sender will again simply time out and

retransmit the ENDFILE. The packet will eventually be acknowledged by

the waiting receiver. If the ENDREPLY packet from the sender is lost,

4 the receiver will time out (five seconds). After it times out, it can

quit and assume that the transfer was completed successfully since it

previously received the ENDFILE packet.

-. .

27

COMMQHUNICATIONi IIIA~IOQ N1 M i MMLM INTEUEAC

The level of protocol described in this chapter is the highest

level used in this local network system. This level does all of the

communication with the user of the system and is concerned with opening

and creating the required files by using the file handling procedures

available within the UNIX operating system on the VAX and the HPE

* operating system on the HP 3000. It is also concerned with detecting

and reporting to the user any errors that may occur due to problems in

opening files, system crashes, improper usage of the file transfer com-

mands, and other such problems. Within this protocol is a subprotocol

that is concerned with initiating communication between the two comput-

era to allow the transfer of files using the previously described file

transfer protocol.

Syste~a~m OrzanizaZtion

The system organization requires the user to log in on the VAX to

initiate file transfers both to and from the HP 3000. On the VAX, the

user executes a command that runs a program to communicate with a simi-

lar program that is running continuously on the HP 3000. This program

on the HP 3000 is called a network daemon and only responds to commands

sent to it over the net. The term "daemon" is used by the developers of

the UNIX operating system to refer to a program that is continuously

waiting for the conditions to occur that cause it to go into action.

This daemon runs in a special account called ETHERNET.SYS and Uses the

system's file handling procedures to store and retrieve files from any

user's directory that has read, write, and save privileges specified as

.......

28

ANY[11]. When the terminal port connected to the controller on the VAX

is opened by running the file transfer command, it is allocated by UNIX

exclusively to that user. This exclusivity allows only one VAX user at

a time to transfer files.

Shown in Figure 4 is a schematic representation of this system

organization. As this figure suggests, files are transferred between

the user's directory on the VAX and the file system on the HP 3000.

This file convention allows the user to specify the full path name on

both computers and thereby place the file in any directory to which the

user has access. For example, on the HP 3000 a fully specified name is

of the form OFILENAME.GROUP.ACCOUNT." If the name is not fully speci-

fied, it will default to the ETHERNET.SYS account on the HP 3000 and can ,

be transferred to the user's directory using the FCOPY command[11]. If

the path name is not fully specified on the VAX, it defaults to the

user's current working directory.

The file program on the VAX (see Appendix 3) must be linked to two

command names after it is compiled using the "ln" command[7]. The two

names to be linked to this program are "sendhp" (meaning send a file to

HP 3000) and "gethp" (meaning get a file from the HP 3000). This naming

is necessary because this single program uses the name with which it is

called (sendhp or gethp) to determine the direction in which the files

will be transferred.

I:.

29

USER

VAX

USER'S
DIRECTORY

ETH ER

HP 3000

- FILE SYSTEM

NETWORK A P

DAEMON 4CONTROLLER

Figure 41. System organization for file transfers

30

A.Z 1jj& Transrfer 1.b A i

. Using the command "sendhp srefile [destfile]" to call the VAX file

program (see Appendix 3) will cause the file named in "srcfile" to be

transferred to the HP 3000 over the network. The "destfile" is the name

that the user wants the file to be called at the remote computer. The

brackets indicate that "destfile" is an optional parameter. If it is

omitted, the file name at the destination defaults to be the same as the

source file name. If this command executes properly, the program simply

ends and returns the system prompt. If it is unsuccessful in transfer-

ring the file after all attempts at retransmission, it will print an

error message to the terminal indicating the nature of the problem.

The program executes the following sequence of events to process

the "sendhp" command. It first checks the number of arguments to make

sure all of the required arguments are present and to make sure that

there are no additional arguments. The arguments for "sendhp" are

*: sendhp itself and the words typed after the command on the same line,

namely the source file name (srcfile) and, optionally, the destination

file name (destfile). If the number of arguments is wrong, it prints an

error message indicating the proper usage and terminates execution. If

the number of arguments is correct, it checks the name with which it was

invoked to determine the direction of the file transfer. Since in this

case it was invoked with the name "sendhp," the direction of transfer is

from the VAX to the HP 3000. Once the direction is known, the program

assigns as the destination file name the third argument of the command,

or it defaults to be the same as the source file name if no third argu-

4 - ' " " ' - " - - ' - - - I ' m l .. ,,:i ,,m ,..,...;- ,,, ,,-.,. , w "- '-"-- -. ..

31

1 ment is given. Next, the terminal port connected to the controller is

opened and allocated to this user and the network station address of the

controller is determined using the enquire (ENQ) command previously

described. If the controller is presently allocated to another user,

the program will terminate with a message indicating that the controller

is busy. Otherwise, the program next attempts to open the source file.

If it does not exist, the program terminates with an error message.

After this initialization, the program attempts to initiate commun-

ication with the network daemon running the HP 3000. This is done by

• - sending a RECFILE packet which tells the network daemon to prepare to

receive a file from the VAX. This packet has the same format as previ-

ously described with the data portion containing the destination file

name, which is the name that the network daemon will use to save the

file in the HP 3000 file system. Upon receiving the RECFILE packet, the

*network daemon opens a new file with the pioper name and then sends an

acknowledgement (ACKFILE) packet back to the VAX to indicate that it is

ready to begin receiving the file. If for any reason the VAX does not

receive the acknowledgement packet before timing out, it simply

retransmits the RECFILE packet.

At this point, communication has been established between the two

computers and they are ready to begin the actual file transfer. The

file transfer protocol described in the previous chapter is then used to

effect the transfer with the VAX as the sender and the HP 3000 as the

receiver. After the end sequence is completed, the daemon on the HP

3000 attempts to close the just received file as a new permanent file

32

and save it in the disc file system. If a file already exists in the

directory with the same name, it will be unable to successfully close

the file and will rename the new file so that it can be properly saved.

This renaming is done automatically and the user is not notified of the

change. It is done simply as a convenience so that the file will not

have to be transferred again, but also will not overwrite a previously

existing file. The renaming consists of simply appending a one digit

number to the end of the file name to give a unique name to this new

file. To get the correct (renamed) file, the user lists the contents of

his directory (after logging on to the HP 3000) and looks for a file

having the expected name plus the added single digit. The file with the

largest added digit is the most recent version received over the net.

A.a. EJI& Tan sfrs fr=la REt 3M O JI VAU

To send files from the HP 3000 to the VAX the command "gethp

srcfile [destfile]" is used to call the VAX file program, where

"srcfile" and "destfile" have meanings as in the "sendhp" command. As

previously mentioned, both of these commands must be linked to the same

program. As when the program is called with "sendhp," "gethp" causes it

to go through the same initialization sequence, first checking for the

proper number of arguments, then determining the transfer direction and

the destination file name, and finally opening the controller's port and

determining the network station address of the controller. After this

initialization, the program is ready to initiate communication with the

network daemon on the HP 3000.

33

:.3 The first step in setting up communication with the network daemon

is for the VAX to send a SENDFILE packet. This packet is formatted as

previously described with the source file name in the "data" portion of

. the packet. After receiving this packet, the network daemon attempts to

open the named file. If it cannot open the file, probably because it

does not exist (perhaps the user spelled the name wrong), then it sends

a NAKFILE packet back to the VAX. This NAKFILE is in the standard for-

mat with nothing in the "data" portion of the packet and consists only

of header bytes and the controller-generated checksum. Upon receiving

this negative acknowledgement, the VAX prints an error message to the

'- user indicating that the file does not exist and terminates execution.

If, however, the file exists and is opened successfully, the network

daemon returns an ACKFILE packet to the VAX indicating that it is ready

to transmit the file. Upon receiving this acknowledgement, the VAX

creates a new file with the name in "destfile" (or "srcfile" if no

"destfile" is specified) in which to store the incoming file from the

network daemon. If a file already exists on the VAX with the same name

as in "destfile," the program will append the suffix ".new" so as to

" avoid overwriting the old file. Once this communication is established

and all of the appropriate files are opened and created, the file

transfer protocol described in the previous chapter is used to transfer

the files with the network daemon as the sender and the VAX as the

receiver. After the file has been transferred, the program terminates

' and returns the system prompt to the user. Other error messages are

similar to those for "sendhp."

i'

34

- a. h hetwork Daemn

The network daemon is the program that runs continuously on the HP

3000 listening for file transfer commands from the VAX sent over the

net. The logic of this program closely follows the logic used in the

program described above and a listing for the entire network daemon is

included in Appendix 4. The main difference between this program and

the "sendhp/gethp" program above is that this network daemon only needs

to be started once when the HP 3000 is initially turned on or a cold

start is executed. To start this program, the system operator needs to

execute the command "STREAM STARTNET.LILJA.SYS" which will load in the

network daemon and start it running in the account ETHERNET.SYS. Before

this command is executed, the operator should manually reset the network

controller. A listing of the file STARTNET.LILJA.SYS is shown in Appen-

dix 5.

System Error Codes .

There are several errors that can occur when using the "sendhp" and

"gethp" commands that will cause the program to terminate. Besides

printing a message on the user's terminal, the program also returns an

error number using the "exit" system call. These error codes are sum-

marized in Table 4. If the file was transferred successfully, the pro-

gram will return 0 to indicate that no error occurred. Error code 1

means that the program was called with the incorrect number of argu-

ments, either no source file name was given or too many file names were -

given. Codes 2 and 8 mean that the source file does not exist on the

VAX or the HP 3000, respectively. This is usually due to the file name

35

Table 4. System Error Codes

Name Code Error Message
m

NOERROR 0 (No message is displayed.)
BADAROS 1 Usage is: sendhp arefile [destfile] or

Usage is: gethp srofile [destfile].
BADOPENVAX 2 Error - can't open (filename) on VAX.
BADREMOTE 3 Remote machine does not respond.
CONTDOWN 4 Controller on VAX is dead. Try resetting it.
NOCONTOPEN 5 Couldn't open controller's port.

It must be busy (or dead). Try again later.
NOCONFIG 6 Couldn't configure the controller's port.
"XITERROR 7 Some sent packets were not acknowledged.

Try again.
BADOPENHP 8 Error - can't open (filename) on remote machine.

being spelled incorrectly. If the network daemon on the HP 3000 does

not repond to a request from the VAX after the request has been

transmitted a fixed number of times, the program will assume that the

remote machine is dead and will return error code 3. If the network

daemon acknowledges some, but not all of the transmitted packets, theU
program assumes that the daemon program must have crashed in the middle

of the transfer and error code 7 is returned. In this case no (partial)

file is stored in the receiver's file system if the HP 3000 is the

receiver. However, a partial file could be stored in the VAX file sys-

tem if the VAX is the receiver. The user may wish to try to transfer

the file again. If a peculiar system state was left at the end of the

first transfer, a new error message will indicate the problem.

Error codes 4 through 6 are concerned with the status of the net-

U: work controller connected to the VAX. When the controller does not

respond to the enquire command (ENQ), it must be dead and needs to be

36

* manually reset. This problem returns error code 4i. Codes 5 and 6 are

* returned if the program is unable to open or configure the terminal port

*connected to the controller. The program will be unable to open the

port (code 5) if someone else is already using the network, but the pro-

gram should be able to open the port successfully after the other user

is finished. If the program was able to open the port, the UNIX "stty"

routine should also be able to configure the port. Error code 6 is

returned if it cannot. These error codes are only intended to point the

user in the proper direction and should not be taken as the last word in

diagnosing the error.

A.L. Packet j±Z& L=r E±A Transfers

The size of the packets have a significant effect on the efficiency

of the file transfers. Larger packets are generally desired for faster

transfers[12]. Due to a limited amount of buffer memory, the controller

restricts the maximum packet size to 10241 bytes. When file transfers

are attempted using this maximum size, it has been found that the file

system on the HP 3000 is too slow to keep up with the packet traffic.

That is, when transferring a file from the VAX to the HP 3000, the HP

3000 takes too long to store and acknowledge the packets, thereby caus-

ing the VAX to time out and retransmit many packets. The result is a

degradation of the overall system performance.

Another more severe limitation is that the VAX will only buffer a

4 maximum of 256 bytes from the controller terminal port on input. This

limitation only becomes apparent when the VAX is heavily loaded. When

it is lightly loaded, the terminal driver appears to have enough time to

777

37

read all of the characters being sent by the controller, but characters

that overflow the buffer under heavy VAX loading are simply thrown away.

When these characters are discarded, the file transfer program waits

indefinitely for the discarded characters to be transferred by the con-

troller. The only way to recover from this problem is to restart the

program and manually reset the controller.

* The result of these limitations is that for all file transfers a

packet size of no more than 256 bytes should be used. This maximum size

provides for reasonably efficient transfers and still assures proper

buffering and timing on both of the host computers.

38

We have described the implementation of a local computer network to

allow the transfer of files from one host computer to another. The

transfer is accomplished by logging in on the VAX computer and executing

one of two simple commands to transfer a file to or from the HP 3000

computer. The four distinct levels of protocol used in this implementa-

tion were described. The lowest level protocol, the Ethernet protocol,

controls the actual transmission of packets over the ether and is imple-

mented in a previously built microprocessor based controller. This

level of protocol delivers packets to their destinations with a high

probability of Success, but any error control must be done at a higher

level.

The remaining three levels of protocol represent the main work of

this thesis and are implemented entirely in software on the host comput-

ers. The host to controller communication protocol, which allows the

host computer to control the slave Ethernet controller, was the most

difficult to implement due to its dependency on the unique characteris-

tics of the terminal drivers of the two hosts.

The next level of protocol is the file transfer protocol which

implements the transfer of tiles as a series of sequentially numbered

packets. This protocol is also tolerant of transmission errors that

destroy individual packets by providing for the retransmission Of pack-

* eta that have not been acknowledged after a fixed interval of time.

The highest level of protocol in this local networkc communicates

with the user and initiates the communication between the network

39

* - program running on the VAX and the network daemon that runs continuously

on the HP 3000.

S.. uggestins .=g .Imroemen

While the system works as it was intended and provides a simple

mechanism to transfer files between the two computers, there are some

things that could be done to improve its overall performance and useful-

*ness. One main disadvantage of the current implementation is the rela-

tively slow speed of large file transfers. The main bottleneck is the

9600 baud serial communication line connecting the controllers to their

host computers through terminal ports. A much better strategy would

employ a direct memory access (DMA) connection between each controller

U and its host computer. Even a byte parallel connection between the con-

troller and the host would be preferable to the serial connection now

used. One problem with a DMA or a parallel connection scheme is that it

* would be unique to each type of host and the controller would lose some

of its portability.

Another improvement to the controller would be to simplify the host

* to controller communication protocol. As it is now, this protocol is

complex and difficult to use. It would he Dice if the controller would

listen to the ether continuously and be able to notify the host whenever

a packet arrived. This would eliminate the need for the daemon on the

host and would make the host's network software much simpler.

t There are some other improvements to the system that could be

implemented totally in software on the host computer. One of these is

40

to allow the multiplexing of several different simultaneous file

transfers from several users. This multiplexing, however, would cause

ambiguity in packet sequence numbers since these numbers are sequential

only within a single file transfer. To resolve this ambiguity, an extra

field would have to be added to the header portion of each packet for a

"file number." This file number, together with the packet sequence

number, would uniquely identify each packet of each file transfer in

process.

Another improvement is to allow a usw to log in on either host

computer and transfer files either to or from the remote host. This

would require a network daemon on both hosts to listen for commands on

the net and some mechanism to allow a user logged in on the host to pass

a command to the local daemon. The implementation of this mechanism

does not appear to be straightforward and would probably be a nontrivial

task.

One other useful improvement is to allow a user to log in on the

remote machine through the network. For example, a user could log in on

the VAX using a modem through a dial-up line and then use the network to

log in on the HP 3000 as a normal user. This would require an intelli-

gent process to be run_ the remote host to simulate a terminal or

it would require a substantial modification to the software in the Eth-

ernet controller. Any modifications to the controller would probably

make it no longer portable, which may be undesirable.

Anyone attempting to modify this system should look carefully at

the program listings in the Appendices. Many of these routines, such as

4!1

the routines to send and receive individual packets, could probably be

used unchanged in any future enhancements. In any case, they should

provide a guide for implementing many of the fine details such as the

m complex host to controller communication protocol. While this system is

complete as it is, it is hoped that it will provide a starting point for

a larger local network.

.

142

Appendix 1

The PACKET program for the VAX

43

/0 program to send and receive packets over the Ethernet 0/

/0 include required libraries a/

#include <stdio.h> /* standard i/o library 0/

#include <sgtty.h> /0 library for tty set-ups '/

/5 define constants 0/

*define TTY "/dev/ttyO7" /e port to connect controller to 0/
#define MAXLINE 510 /* maximum length of input line */
define PACKETSIZE 512 / maximum size of packets 5/

0 #define MAXCOUNT 16 /* maximum number of tries before aborting
transmission attempts

#define OK 1 /* flag indicates transmission was OK 5/

#define NOTOK 0 /5 flag indicates transmission was not OK 5/

S /0 define command bytes 5/

#define ACK 0x06 /0 acknowldgement - all ok 0/
#define NAK 0x15 /0 negative acknowledge - error has occured 0/
#define ENQ OxO5 /0 enquiry command 5/

#define SEND Oxil /0 send the following packet 5/

#define SOH Ox01 /* start of header - device sending SOH is
requesting the packet length 5/

#define REC 0x12 /* receive packet from Ethernet 5/

#define CAN 0x18 /0 cancel last receive request 0/

/* define golbal variables 5/

char destaddress; /5 address of destination controller 0/
char srcaddress; /0 address of source (this) controller 0/
int controller; /0 file descriptor of controller port 5/

/0 main program to get and process commands 5/

I.

44

main ()

int command; /0 command to be executed 0/ A

printbannero; /9 print banner, version number 0/
initializeo; / init station addresses 0/
help(); /0 print list of commands 9/

/* execute commands until quit 9/

while (((command = getcommando) 1= 'q,) && (command 1= IQ'))

switch (command)
{ case 's': /0 send a packet /

case IS':
sendo;
break; 71

case 'r': /* receive a packet 0/
case IR?:

receive();
break;

case 'e':
case 'E': /* enquire - print address */

enquire(;
break;

case 'c': /0 cancel last receive 0/
case 'C': /0 command 0/

cancel();
break;

case 'h': /0 help print list of 0/

case IH': /0 these commands 5/

helpo;
break;

default: /* invalid command0/
printf("\ninvalid command\n");
break; ., }

/0 print quitting and end 0/

printf("\nquitting ... \n"); \

/0 send command read a packet from the terminal and send it
over the ethernet, assumes addresses are initialized in
srcaddress and destaddress 0/

45

send()
{

tint length; /0 length of data input from terminal 0/

char packet[PACKETSIZE]; /0 completed packet to send.
dest : src : data 0/

m char data[MAILINE]; /0 data read from terminal 0/
int ij; /0 indices in loop 0/

int count a 1; /9 number of attempts to xmit so far 0/

/* read the packet from the terminal 0/

printf("Enter the packet terminated by <ret>:\n\n");

length = getline(data, MAXLINE);

/0 create the packet, ie. add addresses to start 0/

packet[O] = destaddress;
packet[] = srcaddress;

for (i=2, J=O; j < length ; +i, +J)
packet[i] = datari];

/0 try to send packet until OK or too many tries 0/

0 while ((sendpacket(packet,length+2) I= OK)
&& (count < MAXCOUNT))
++count;

/0 print message about transmission 0/

Uif (count >= MAXCOUNT)
printf("\npacket not transmitted after %2d tries\n",count);

else printf("\npacket transmitted OK after %2d tries\n",count);

/0 sendpacket - send a single packet. addresses are embedded within
the packet, returns OK if good transmission, NOTOK otherwise 0/

sendpacket(packet,length)

char packet[]; /0 packet to be sent 0/
int length; /* length of packet 0/

char reply; /0 controller's replies to host 0/
char status; /* status byte from controller 0/
int xmitflag : NOTOK; /0 hold OK or NOTOK 0/
char len.ow; /0 low-order byte of length 0/

L

416

char lenLhigh; /. high-order byte of length "/

int i; /0 index in loop 0/

/* split length into high- and low-order parts 0/

lenhigh length / 256; /A truncates fraction 0/
lenlow = length - (len_high ' 256);

/* ready controller to xmit /

sendcontroller(SEND);
reply = readcontrollero;
status readcontrollero;

if (reply == SOH) /* controller ready 0/

sendcontroller(len-low);
sendcontroller(lenhigh);
reply = readcontrollero;
status = readcontrollero;

if (reply == ACK) /0 controller ready 0/

for (i=O; i<length; ++i) / send packet /I
sendcontroller(packet[i]);

reply = readcontrollero;
status f readcontrollero;

if (reply == ACK) / it worked 0/
xmitflag = OK;

return(xmitflag);

/0 receive command - receive a packet from the ethernet and print it
on the terminal 5/

receive(),7 {
int length; /0 will contain length of packet recv'Id 0/
char packet[PACKETSIZE]; /0 recv'd packet 0/

int 1; /0 index in loop 0/

47

N /0 print message and receive the packet el

-.printf(\nWaiting for packet on the ethernet...\n");

if (recvpacket(packet,&length) =a OK)

/0 print addresses, print the packet 0/
printf(upacket received OK\n\n");
printf("Destination address: %2x \n",packet[0]);
printf("Source address: %2x \n\n",packet[1]);
for (i=2; i < length; +i)

putchar(packet[i]);
printf("\n\n");

else printf("\npacket damaged. receive cancelled\n");

/0 recvpacket - receives a packet from the ethernet with this
stations's address or the broadcast address.
returns OK if recv'd OK, NOTOK otherwise.
values of packet and length returned via pointers
cancels receive command if not received OK /

recvpacket(packet,plength)

char packet[]; /0 contents of packet received 0/
int Oplength; /0 pointer to length. Returns length of

packet to calling routine 'I

char reply; /0 controller's replies to host 0/

char status; /0 status byte from controller 0/
char len_low; /0 low-order byte of length /
char len.high; /0 high-order byte of length '/
int i; /* index in loop 0/
int rcvflag = NOTOK; /I holds OK or NOTOK '/

/N tell controller to receive packet 0/

sendcontroller(REC);
reply = readcontrollero;
status = readcontroller(;

/0 check if packet recv'd OK /

if (reply u= ACK) /0 packet OK 0/

418

/0 read length 0/
sendcontrollor(SOH);
blenlow readoontrollero;
lenjdigh =readcontrollero;
sendoontroller(ACK);

1* read the packet */ .
fplength = (256 0 lenjligh) + lenJlow;
for (isO; i < Oplength; ++i)

packetfi] = readoontrollero;
sendcontroller(ACK);
rcvflag = OK;

else cancel(); /* not recv'd OK 0

return(rcvflag);

/0 enquire -print ethernet station address
also re-initializes srcaddress

enquire()

/0 get address, print it 0

sreaddress =findaddresso;
* . printf("This station address is %2x H\n", srcaddress);

/0 cancel -send cancel command to controller 0/

cancel()

- 49

char reply; /* controller's reply to CAN */

char status; /0 also sends status byte 0/

/ send CAN, read reply and status 0/

sendoontroller(CAN);
reply u readcontrollero;
status = readoontrollero;
printf("\ncancelled\n");

/0 help - print menu of available commands 1/

IiI

help()

printf("\n");
printf("s - send a packet\n");
printf("r - receive a packet\n");
printf("e - enquire: print this station's ethernet address\n");
printf("c - cancel receive command\n");
printf("h - help: print this menu\n");
printf("q - quit\n\n\n");

/* initializes source and destination addresses.
source address is determined by enquiry command.

-_ destination address is prompted from user. 1/

!-" - , initialize()

/0 initialize controller's i/o port 0/

initcontrollero;

/0 do ENQ command to init and print this station's address 0/

enquireo;

/0 read dest,. address from terminal 0/

ii

50

*1

printf("Enter destination address <00 - FF> ");
soanf("%2x", &destaddress);
printf("Destination address is %2x\n\n",destaddress);

/4 find the ethernet station address of the controller 0/
/0 uses the ENQ command, returns value of address 0/

findaddress(){f
char status; /0 status byte returned from controller 0/

/* send ENQ to controller 0/

sendoontroller(ENQ);

/0 read status, read and return address 0/

status = readcontrollero;
return(readcontrollero));

/I print heading and version number 0/

printbanner()
{

printf("\n\n\n\n");
printf("Ethernet packet transceiver test\n");
printf(" Version 1.0\n\n\n");

I. I

______.._"_..-.

1,

51

" "/it getcommand - read command from terminal
returns single character corresponding to the command I/

getcommand()i _: {

char inputline[MAXLINE]; / line read from terminal 0/

/0 print prompt, read line, return first character ./

printf(command> ");
getline(inputline ,MAXLINE);
printf(w\n");
return(inputline[O]);

* . /6 getline - from "c" by Kernighan and Ritchie, p. 26 0/

getline(s,lim) /0 returns length of line read in 0/

char s[]; /0 line that is read in I/
int lim; /9 max. size of line to be read 0/

. int c, i;

for (i-O; i<lim-1 && (cagetchar()) Is EOF && a I= '\n'; .-.i)R s~i]u- ;

if (c u- W)
{ sci -2c;

* .-
s +i] i;

return(i);

/9 initoontroller - open and init. tty port to talk to controller 0/

LI initoontroller()

/0 structure to initialize tty port to controller 0/

static struct sgttyb ttyb a (

L

C. *. -- -

52

* B96 00, B96 00,
0f,09K! RAW IANYP

/0 open controller's tty Port 0

if ((controller z open(TTY,2)) -1) /* couldn't open 0/
printf ('Couldn't open controller's port\n");

else /0 opened OK so configure port for RAW, 9600 baud 0
if (stty(controller,&ttyb) In 0) /0 couldn't configure 0

printfQ'Couldn't configure controller's port\n");

/0 sendcontroller s end a byte to controller 0/

sendeontroller(byte)

char byte; /* byte to be sent 0

/* send the byte, print error if not sent OK '

if (write(controller, &byte, 1) I= 1)
printf('Can't write controller\n");

/0 readcontroller -returns byte read from controller 0/

readcontroller()

char byte; /0 byte read in 0/

/I read byte, print error if not read OK 0/

if (read(controller, &byte, 1) In 1)

53

printf("Can't read controller\n");
else return(byte);

16*

45

Appendix 2

The PACKET program for the HP 3000

............ - .

55
p

$CONTROL USLINIT
BEGIN
<< PROGRAM TO SEND AND RECEIVE PACKETS OVER ETHERNET >>

S<< GLOBAL VARIABLE DECLARATIONS >>

INTEGER CONTIN; < FILE # OF CONTROLLER INPUT PORT >
INTEGER CONTOUT; << FILE # OF CONTROLLER OUTPUT PORT >>
BYTE DESTADDRESS; << ADDRESS DESTINATION CONTROLLER >>
BYTE SRCADDRESS; << ADDRESS SOURCE CONTROLLER >>
BYTE ARRAY MSGB(0:80); << I/O BUFFER FOR TERMINAL >>
LOGICAL ARRAY MSG(*)=MSGB(O);<< PRINT BUFFER -- "WORD" EQUATE >>
BYTE COMMAND; << COMMAND TO BE EXECUTED >>

<< DEFINE COMMAND BYTES TO/FROM CONTROLLER >>

EQUATE ACK = (16)06, << ACKNOWLEDGEMENT -- ALL OK >>
NAK = %(16)15, << NEGATIVE ACK - ERROR HAS OCCURED >>ENQ (16)05, << ENQUIRE - RETURN STATUS & ADDRESS >>

SND = %(16)11, << SEND THE FOLLOWING PACKET >>3 SOH = $(16)01, << START OF HEADER - DEVICE SENDING IS >>
<< REQUESTING THE PACKET LENGTH >>

REC z %(16)12, << RECEIVE PACKET FROM ETHERNET >>
CAN = %(16)18; << CANCEL LAST RECEIVE REQUEST >>

<< DEFINE CONSTANTS >>

EQUATE PACKETSIZE = 128, << MAXIMUM SIZE OF PACKETS >>
MAXLINE m 80, << MAXLINE LENGTH OF INPUT LINE >>

.. MAXCOUNT a 16, << MAXIMUM NUMBER OF TRIES BEFORE >>
<< ABORTING TRANSMISSION ATTEMPT >>

OK 1 1, << FLAG FOR NOK w >>
NOTOK = 0; << FLAG FOR "NOTOK" >>

<< INTRINSIC DECLARATIONS >>

INTRINSIC READ, PRINT, BINARY, FREADFWRITE,FOPEN, FSETMODE,
FCONTROL, IOWAIT, GETPRIVMODE, GETUSERMODE, ASCII;

<< PROCEDURE DECLARATIONS >>

[2

56

<< PRINTBANNER - PRINT HEADING AND VERSION NUMBER >>

PROCEDURE PRINTBANNER;
BEGIN

PRINT(MSG,O,%204); << FOUR BLANK LINES >>
MOVE MSGB :z "ETHERNET PACKET TRANSCEIVER TEST*;
PRINT(MSG,-32,%40);
MOVE MSGB :- " VERSION 1.0";
PRINT(MSG,-1 5,%40);
PRINTCMSG,O,%203); << THREE BLANK LINES >>

END; << PRINTBANNER >>

<< RWCNTLR - READ/WRITE FROM CONTROLLER >>

COMMENT: BECAUSE OF THE LACK OF BUFFERING ON INPUT PORTS,
MUST FIRST SET-UP READ, THEN WRITE, THEN FINISH
READ. THAT IS, CONTROLLER RESPONDS TOO QUICKLY
FOR HP TO CATCH IN NORMAL I/O ;

PROCEDURE RWCNTLR(INBUFFB, INLEN, OUTBUFFB, OUTLEN);

VALUE OUTLEN, << PASS THESE TWO BY VALUE >>
INLEN;

BYTE ARRAY INBUFFB; << INPUT BUFFER TO CONTROLLER >>
<< RETURNS WITH DATA READ FROM CONTROLLER >>

INTEGER INLEN; << NUMBER OF BYTES TO READ FROM CONT >>
BYTE ARRAY OUTBUFFB; << OUTPUT BUFFER TO CONTROLLER >>

<< ENTER WITH DATA TO SEND TO CONT >>
INTEGER OUTLEN; << NUMBER OF BYTES TO SEND TO CONT >>

BEGIN
LOGICAL ARRAY INBUFF(*)-INBUFFB(O); << EQUATE TO ELIMINATE >>
LOGICAL ARRAY OUTBUFF(')-OUTBUFFB(O); << WARNING MESGS >>
INTEGER DUMMY; << HOLDS RETURNED VALUE FROM IOWAIT, FREAD >>

<< SET-UP READ, NO WAIT FOR FINISH >>
DUMMY "- FREAD(CONTIN,INBUFF,-INLEN);

4 << WRITE BUFFER TO CONTROLLER >>
FWRITE(CONTOUTOUTBUFF,-OUTLEN,%320);

<< FINISH READ, RETURN BUFFER AND LENGTH >>

DUMMY :- IOWAIT(CONTININBUFF);

• . .I , .. . ,: , _ ... " ..

57

U
END; << RWCNTLR >>

R

<< FIND ETHERNET STATION ADDRESS OF THE CONTROLLER USING ENQ >>
<< COMMAND. RETURNS ADDRESS IN tADDRESS' PARAMETER. >>

PROCEDURE FINDADDRESS(ADDRESS);

BYTE ADDRESS; << RETURNS ETHERNET STATION ADDRESS >>

BEGIN
BYTE ARRAY BUFF(O:1); << I/O BUFFER FOR CONTROLLER >>

<< LOAD 'ENQ' INTO BUFFER >>
BUFF(O) := ENQ;

<< SEND TO CONTROLLER, READ STATUS AND ADDRESS >>
RWCNTLR(BUFF,2,BUFF,1);

S<< RETURN ADDRESS >>
ADDRESS := BUFF(I);

" END; << FINDADDRESS >>

<< ENQUIRE - GET ADDRESS, PRINT IT ON TERMINAL >>

PROCEDURE ENQUIRE;

BEGIN
INTEGER LENGTH; << NUMBER OF CHARS RETURNED BY ASCII >>

<< GET ADDRESS >>
FINDADDRESS(SRCADDRESS); << LEAVES VALUE IN SRCADDRESS >>

<< PRINT ADDRESS >>
MOVE MSGB :z "THIS STATION ADDRESS IS ';
PRINT(MSG,-24,%320);
LENGTH :z ASCII(LOGICAL(SRCADDRESS),1O,MSGB); << CONVERT >>
PRINT(MSG,-LENGTH,%I40);

END; << ENQUIRE >>

ii

58

<< INITIALIZE CONTROLLERtS PORTS, INIT STATION ADDRESSES >>

PROCEDURE INITIALIZE;

BEGIN
INTEGER LENGTH; << TEMP STORAGE OF RETURNED VALUE FROM READ >>
INTEGER CNTLCODE; << CONTROL CODE FOR FCONTROL >>
BYTE ARRAY TTYIN(0:8); << INPUT PORT >>
BYTE ARRAY TTYOUT(0:8); << OUTPUT PORT >>

<< INIT TTYIN AND TTYOUT >>

MOVE TTYIN :- "ENETIN;R;
MOVE TTYOUT :: "ENETOUT;";

<< OPEN AND INIT CONTROLLER'S PORTS >>

GETPRIVMODE; << FOR NO-WAIT I/O >>
CONTIN := FOPEN(,%604,%4324,-36,TTYIN);
IF = THEN BEGIN << PRINT OK >>
MOVE MSGB := "INPUT OPENED OK";
PRINT(MSG,-15,%40);

END;
GETUSERMODE; << NO MORE NEED FOR PRIV MODE >>

CONTOUT := FOPEN(,%604,%324,-36,TTYOUT);
IF z THEN BEGIN
MOVE MSGB := "OUTPUT OPENED OK";
PRINT(MSG,-16,%40);

END;

CNTLCODE := 5074022; << SPEED, TERMTYPE >>
FCONTROL(CONTIN,37,CNTLCODE); << ALLOCATE TERMTYPE 18 AT >>
FCONTROL(CONTOUT,37,CNTLCODE); << 9600 BAUD >>

FSETMODE(CONTIN,%4); << INHIBIT AUTO CR-LF ON INPUT >>

FCONTROL(CONTIN,13,CNTLCODE); << ECHO OFF >>
FCONTROL(CONTOUT, 13tCNTLCODE);

FCONTROL(CONTIN,20,CNTLCODE); << DISABLE INPUT TIMER >>
FCONTROL(CONTIN,28,CNTLCODE); << DISABLE BLOCK MODE >>

FCONTROL(CONTOUT,28, CNTLCODE);

FCONTROL(CONTIN,27,CNTLCODE); << ENABLE BINARY TRANSFERS >>

59

FCONTROL(CONTOUT,27 ,CNTLCODE);

CNTLCODE := 0;
FCONTROLCCONTIN,36,CNTLCODE); << NO PARITY, FULL 8 BITS >>
FCONTROL(CONTOUT,36 ,CNTLCODE);

<< DO ENQ COMMAND TO INIT SRCADDRESS AND PRINT IT >>

ENQUIRE;

<< READ DESTINATION ADDRESS FROM TERMINAL >>

MOVE MSGB := "ENTER DESTINATION ADDRESS <0 - 255> 0;
PRINT(MSG,-36 ,%320);
LENGTH :z READ(MSG,-3);
DESTADDRESS := BYTECBINARY(HSGB,LENGTH));
PRINT(MSG,O,%203); << THREE BLANK LINES >>

END; << INITIALIZE >>

<< HELP -PRINT LIST OF COMMANDS >

PROCEDURE HELP;

BEGIN
PRINT(MSG,O,%201); << BLANK LINE >>
MOVE MSGB := "S - SEND A PACKET";
PRINT(MSG,-17,%40);
MOVE 145GB :z OR - RECEIVE A PACKET";
PRINTCMSG,-20,%40);
MOVE MSGB := "E - ENQUIRE: PRINT THIS STATION'S ADDRESS";

MOVE MSGB := 'C - CANCEL RECEIVE COMMAND';
PRINT(MSG,-26 ,%II);
MOVE MSGB := 'H - HELP: PRINT THIS LIST';
PRINT(MSG,-26 ,%40);
MOVE MSGB :a 'Q - QUIT";
PRINT(MSG,-8,%'40);
PRINT(MSG,O,%201); << BLANK LINE >>

END; << HELP >>

<< ERROR -MESSAGE FOR INVALID COMMAND >>

60

PROCEDURE ERROR;

BEGIN
MOVE MSGB : "**ERROR - NO SUCH COMAND";
PRINT(MSG,-26 ,%40);

END; << ERROR >>

<< SENDPACKET - SEND A SINGLE PACKET. ADDRESSES ARE EMBEDDED >>
<< WITHIN THE PACKET. RETURNS XMITFLAG = OK IF GOOD >>
<< TRANSMISSION, NOTOK OTHERWISE. LEAVES PACKET UNCHANGED. >>

PROCEDURE SENDPACKET(PACKET, LENGTH, XMITFLAG);

VALUE LENGTH; << PASS BY VALUE >>

BYTE ARRAY PACKET; << PACKET TO BE SENT WITH EMBEDDED ADDRESS >>
INTEGER LENGTH; << LENGTH OF PACKET IN BYTES >>
INTEGER XMITFLAG; << RETURNS 'OK' OR 'NOTOK' >>

BEGIN
. BYTE ARRAY BUFF(O:1); << BUFFER FOR SENDING COMMANDS >>

<< TO/FROM CONTROLLER >>

<< INIT XMITFLAG >>
XMITFLAG := NOTOK;

<< READY CONTROLLER TO XMIT BY SENDING 'SND'. >>
<< READ REPLY AND STATUS >>

BUFF(O) := SND;
r_7 RWCNTLR(BUFF,2,BUFF,1); << SEND 1 BYTE, READ 2 BYTES >>

IF BUFF(O) - SOH << REPLY IS SOH >>
THEN BEGIN << SEND LENGTH, READ REPLY AND STATUS >>

BUFF(O) := BYTE(LENGTH.(8:8)); << LOW-ORDER 8 BITS >>
4 BUFF(1) := BYTE(LENGTH.(0:8)); << HIGH-ORDER 8 BITS >>

RWCNTLR(BUFF,2,BUFF,2); < READ/WRITE 2 BYTES >>

IF BUFF(O) a ACK << CONTROLLER READY FOR PACKET >>
THEN BEGIN << SEND PACKET, READ REPLY, STATUS >>

RWCNTLR(BUFF, 2, PACKET, LENGTH);
IF BUFF(O) a ACK << XMIT OK >>
THEN XMITFLAG := OK;

END;
END;

61

END; << SENDPACKET >>

<< SEND - READ A PACKET FROM THE TERMINAL AND SEND IT OVER THE >>
<< ETHERNET. WILL TRY TO SEND PACKET A MAXIMUM OF 'MAXCOUNTf >>
<< TIMES. ASSUMES ADDRESSES ARE INTITIALIZED IN 'SRCADDRESS' >>
<< AND 'DESTADDRESS'. >>

PROCEDURE SEND;

BEGIN
* . BYTE ARRAY PACKET(0:PACKETSIZE); << COMPLETED PACKET TO SEND >>

<< WITH DEST:SRC:DATA FORMAT >>
INTEGER LENGTH; << NUMBER OF BYTES READ FROM TERMINAL >>
INTEGER COUNT; << NUMBER OF ATTEMPTS TO XMIT SO FAR >>

- INTEGER XMITFLAG; << INDICATES IF PACKET XMITTED OK OR NOT >>
INTEGER I; << INDEX IN LOOP >>
INTEGER TEMP; << USED IN ASCII CONVERSION FOR PRINTING >>

< << INIT COUNT >>

COUNT := 0;

<< READ PACKET FROM THE TERMINAL >>

MOVE MSGB := "ENTER PACKET TERMINATED BY <RET>: ";
P PRINT(MSG,-35,%4O);

LENGTH := READ(MSG,-MAXLINE);

<< CREATE PACKET, IE. ADD ADDRESSES TO START >>

PACKET(O) := DESTADDRESS;
"* .PACKET(1) : SRCADDRESS;

FOR I := 0 UNTIL LENGTH - I
DO PACKET(I+2) := MSGB(I);

<< TRY TO SEND PACKET UNTIL OK OR TOO MANY TIMES >>

DO BEGIN
SENDPACKET(PACKET, LENGTH+2,XMITFLAG);
COUNT := COUNT + 1;

END
UNTIL XMITLAG -- OK OR COUNT >= MAXCOUNT;

<< PRINT MESSAGE ABOUT TRANSMISSION >>

IF XMITFLAG = OK

THEN BEGIN

62

MOVE MSGB :" 'PACKET TRANSMITTED OK AFTER ";
PRINT(MSG,-28,320);
TEMP := ASCII(COUNT,1O,MSGB);

- - PRINT(MSG,-TEMP,%320);
MOVE M3GB :z " TRIESw;
PRINT(MSG,-6,%40);

END << THEN >>

ELSE BEGIN

MOVE MSGB := "**--PACKET NOT TRASMITTED OK";
PRINT(MSG,-27,9%O);

END; << ELSE >>

END; << SEND >>

<< CANCEL - SEND CANCEL COMMAND TO CONTROLLER >>

PROCEDURE CANCEL;

BEGIN
BYTE ARRAY BUFF(0:1); << BUFFER FOR COMMANDS TO/FROM CONT >>

<< SEND 'CAN', READ REPLY AND STATUS >>

BUFF(O) := CAN;
RWCNTLR(BUFF,2,BUFF,1); << SEND 1 BYTE, READ 2 >>
MOVE MSGB := 'CANCELLED";
PRINT(MSG,-9,%0);

END; << CANCEL >>

<< RECVPACKET - RECEIVES A PACKET FROM THE ETHERNET WITH THIS >>
<< STATION'S ADDRESS OR THE BROADCAST ADDRESS. RETURNS WITH >>
<< RCVFLAG z OK IF RECEIVED OK, NOTOK OTHERWISE. CANCELS >>
<< RECEIVE COMMAND (WITH 'CAN') IF NOT RECEIVED OK. >>

PROCEDURE RECVPACKET(PACKETLENGTH,RCVFLAG);

BYTE ARRAY PACKET; << RETURNS WITH PACKET RECEIVED >>
INTEGER LENGTH; e< RETURNS LENGTH OF RECEIVED PACKET >>

,, .- '.4. ' . , .- . . ., mm i m #mmb ,. J J J a - -

63

IINTEGER RCVFLAG; << RETURNS tOK' OR 'NOTOK' >>

BEGIN
BYTE ARRAY BUFF(O:1); << BUFFER FOR SENDING COMMANDS >>

<< TO/FROM CONTROLLER >

<< INIT. FLAG >>

* RCVFLAG := NOTOK;

<< TELL CONTROLLER TO RECEIVE PACKET. WAITS UNTIL PACKET >>
<< IS RECEIVED. >

BUFF(O) := REC;

RWCNTLR(BUFF,2,BUFF,1); << SEND 1 BYTE, READ 2 BYTES >>

<< CHECK IF PACKET RECEIVED OK >>

IF BUFF(O) = ACK << PACKET OK >>
THEN BEGIN

*<< SEND 'SOH', READ LENGTH >>
* BUFF(O) := SOH;

RWCNTLR(BUFF,2,BUFF,1); << SEND 1 BYTE, READ 2 BYTES >>
* ** LENGTH := 256 4 BUFF(1) + BUFF(O);

<< SEND 'ACK', READ PACKET >>
BUFF(O) := ACK;
RWCNTLR(PACKETtLENGTH,BUFF, 1);

<< SEND CONTROLLER FINAL 'ACK' >>

BUFF(O) := ACK;
RWCNTLR(BUFF,O,BUFF,1); << SEND 1 BYTE, READ NO BYTES >>

<< RETURN FLAG 'OKI >>
RCVFLAG := OK;

END << THEN >>

ELSE CANCEL; << NOT RECEIVED OK, SO CANCEL 'REC' >>

END; << RECVPACKET >>

<< RECEIVE -RECEIVE A PACKET ON THE ETHERNET AND PRINT IT ON >>

<< THE TERMINAL >

PROCEDURE RECEIVE;

BEGIN

.511

64

BYTE ARRAY PACKET(O:PACKETSIZE); << WILL CONTAIN RECV'D PACKET >>
INTEGER LENGTH; << LENGTH OF RECEIVED PACKET >>

• INTFGER RCVFLAG; << INDICATES IF PAKCET RECEIVED OK >>
INTEGER TEMP; << USED IN ASCII CONVERSION FOR PRINTING >>

<< PRINT MESSAGE AND RECEIVE THE PACKET >>

MOVE MSGB ": WAITING FOR PACKET ON THE ETHERNET...";
PRINT(MSG,-37,%40);
RECVPACKET(PACKET, LENGTH, RCVFLAG);

IF RCVFLAG = OK
THEN BEGIN << PRINT ADDRESSES AND PACKET >>
MOVE MSGB := "PACKET RECEIVED OK";
PRINT(MSG,-18,%202);
MOVE MSGB : = "DESTINATION ADDRESS: ";
PRINT(MSG,-21 ,t%320);
TEMP := ASCII(LOGICAL(PACKET(O)),10,MSGB);
PRINT(MSG,-TEMP,%40);
MOVE MSGB := "SOURCE ADDRESS: ""
PRINT(MSG,-16,%320);
TEMP : ASCII(LOGICAL(PACKET(1)) ,1OMSGB);
PRINT(MSG,-TEMP,%202);
PRINT(PACKET(2) ,-(LENGTH - 2) ,%202);

END << THEN >>

ELSE BEGIN
MOVE MSGB := "PACKET DAMAGED. RECEIVE CANCELLED";
PRINT(MSG,-34,%202);

END END; << ELSE >>

<< GETCOMMAND - READ COMMAND FROM KEYBOARD >>

PROCEDURE GETCOMMAND(COMMAND);

BYTE COMMAND; << RETURNED COMMAND CHARACTER >>

BEGIN
INTEGER TEMP; << TEMP VARIABLE TO HOLD RETURNED VALUE >>

MOVE MSGB :x "ENTER COMMAND>> ";

:! H

* - -.

65

PRINT(MSG,-16,%320);
TEMP := READ(MSG,-1); << READ CHAR FROM KEYBOARD >>
COMMAND := MSGB(O); << RETURN CHAR >>

END; << GETCOMMAND >>

<< o...... MAIN PROGRAM >>

<< MAIN PROGRAM TO READ AND PROCESS COMMANDS >>

PRINTBANNER; << PRINT HEADING, VERSION NUMBER >>
INITIALIZE; << OPEN CONTROLLER'S PORT, ETC. >>
HELP; << PRINT LIST OF COMMANDS >>

<< EXECUTE COMMANDS UNTIL QUIT >>

GETCOMMAND(COMMAND); << READ FIRST COMMAND >>

WHILE COMMAND <> "Q" DO
BEGIN
IF COMMAND = "S" << SEND A PACKET >>

THEN SEND
ELSE IF COMMAND = "R" << RECEIVE A PACKET >>

THEN RECEIVE
ELSE IF COMMAND = "E" << ENQUIRE >>

THEN ENQUIRE
ELSE IF COMMAND = "C" << CANCEL >>

THEN CANCEL
ELSE IF COMMAND = "H" << PRINT THIS LIST >>

THEN HELP
ELSE ERROR; << PRINT ERROR MESSAGE >>

GETCOMMAND(COMMAND); << GET NEXT COMMAND >>
END; << WHILE >>

END. << MAIN >>

66

Appendix 3

The file program for the VAX

67

/ program to send files over the ethernet.

Called as: sendhp srcfile [dentfile] to send a file to the hp3000
or gethp srcfile [destfile] to read a file from the hp3000

The command gethp must be linked to this same program.
*: That is, compile the program as

cc ethernet.o -o sendhp'
which puts the object code in the file sendhp. This must then be
linked to gethp using the command

'iln sendhp gethp'
which causes both of these names to point to the same file.

The destfile is optional and defaults to be the same as the srofile.
If file name on the hp is not fully specified, it will
store the file in the public area or try to retrieve the file
from the public area. This public area is ETHERNET.SYS.

Returns an error code via call to exit() when program terminates.
Return of zero means all went ok.

- 5/

/ include program libraries 0/

#include <stdio.h> /I standard i/o library 5/

#include <sgtty.h> /0 library for tty set-ups 0/
* #include <signal.h> /5 library for signals (time-out) 5/

/0 define constants 5/

* #define TTY "/dev/tty02" /0 port to connect controller to 0/
#define PACKETSIZE 126 /0 maximum size of packets 5/

#define DATASIZE PACKETSIZE - 6 /0 size of data in packet 0/
#define MAXCOUNT 6 /* maximum number of tries before aborting

transmission attempts 0/

#define OK 1 /0 flag indicates transmission was OK 0/
#define NOTOK 0 /* flag indicates transmission was not OK 0/
#define TIMEOUT 5 /5 time-out (in seconds) for read 5/

#define T 1 /0 true flag
#define F 0 /0 false flag 5/

#define VAX 0 /5 flags to indicate which machine is 0/
#define HP 1 /0 the source of the file transfer 'I

F

68

/* define packet types 0/

#define ACKFILE 1 /9 file packet received ok 0/

#define NAKFILE 2 /0 packet not received ok, or 0/
/0 some other error 0/

#define DATAFILE 3 /0 packet contains file data 0/
#define ENDFILE 5 /* end of file 0/
#define ENDREPLY 6 /0 ack for ENDFILE 0/
#define SENDFILE 7 /0 prepares receiver to send file G/

/0 named in DATA part of packet 0/

#define RECFILE 8 / prepares receiver to read and 0/

/0 save file named in DATA part G/

/9 define command bytes for controller 0/

#define ACK 0x06 /* acknowldgement - all ok 0/

#define NAK 0x15 /* negative acknowledge - error has occured 0/
#define ENQ Ox05 / enquiry command /-
#define SEND Ox1l /0 send the following packet 0/

#define SOH Ox01 /0 start of header - device sending SOH is
requesting the packet.length 0/

#define REC 0x12 /0 receive packet from Ethernet 0/

#define CAN 0x18 /0 cancel last receive request 0/

/0 define error codes returned by main program 0/

/0 these indicate status of program when it terminates, returned 0/
/0 via an exit(.) call. 0/

#define NOERROR 0 /0 no error - all ok 0/
#define BADARGS 1 /0 incorrect number of args. in command line 0/
#define BADOPENVAX 2 /0 can't open srcfile on VAX 0/
#define BADREMOTE 3 /0 remote machine not responding 0l

#define CONTDOWN 4 /* controller is not responding */
#define NOCONTOPEN 5 /0 can't open the controller's port 0/

#define NOCONFIG 6 /* can't configure controller's port 0/
#define XMITERROR 7 /0 error in xmit of file. packets not ack'ed

by remote host. 0/
#define BADOPENHP 8 /0 can't open srcfile on HP 0/

/0 declare golbal variables 0/

F

69

char destaddress; /0 address of destination controller 0/

char srcaddress; /* address of source (this) controller 0/
Sint controller; /e file descriptor of controller port 0/

int timedout; /4 flag to indicate if read has timed-out 0/

U

/* main program - gets arguments from command line and calls appropriate
routine to send/receive the file 0/

main(argo,argv)
nt argc; /* command line argument count 0/

char *argv[]; /0 argument values - ie. program
name and filenames 0/

{
char srcfile[30J; /N name of source file 0/
char destfile[30]; /0 name of destination file 0/

int aremachine; /9 flag to indicate which machine is to
be the source of the file. Determined
by the name the program was called
with. /

int errorcode; /0 error number to be returned 0/

/0 get names of files and the source machine 0/

if ((argo < 2) I1 (argo > 3)) / check number of arg 0/
S . {

fprintf(stderr,eUsage is: $s srofile [destfile]\n",
argv[0]);

errorcode = BADARGS;)
else
f /0 find source machine 0/

if (strcmp(argv[O],"sendhp") == 0) /0 matches 0/

srcmachine x VAX;
else arcmachine = HP;

/# get name of source file 0/
stropy(srcfile,argv[1);

/I get name of destfile, defaults to arefile 0/
if (argo = 3) /, there is a destfile given 0/

strcpy(destfile,argv[2]);
else stropy(destfile,srcfile);

[I

70

/* iit network addresses, open controller's port 0/

if ((errorcode z initializeM) 0) /0 no error *

/0 send or receive the file, as appropriate 5

if (sromachine ==VAX)
errorcode

sendfromvax(srefile,destfile);
else errorcode getfromhp(srcfile,destfile);

exit(errorcode);

) /0 end of main program 5

/* sendfromvax -procedure to send a file from the vax to the hp using
the sendafile routine after initiating communication with the hp
over the net. Checks for errors if the file does not exist, etc.
Returns 0 if sent ok, else returns an errorcode. 5

sendfromvax(srcfile ,deatfile)

char arcfile[J; /0 name of file to be sent 5

char destfile[]; /0 name to call file at destination 5

mnt filenum; /2 file number returned bi open 0/
char packet[40j; /* packet used to initiate comm. I/
int packlen; /* length of finished packet *
int errorcode; /* returned error code 0/

/* open the file 0/

if ((filenum = open(arcfile,0)) zx-1)/0 not opened ok 5

fprintf~stderr,'ERRORt - can't open %s on VAX\n",arcfile);
errorcode =BADOPENVAX;2

/0 send RECFILE to initiate communication with the hp.
Includes deatfile as data portion of packet. 0/

71

strcpy(&packet[6],destfile);

assem(RECFILE,0,strlen(destfile),packet,&packlen);

if (senderrorfree(packet,packlen) == NOTOK)

, • fprintf(stderr,
"Remote machine does not respond\n");

errorcode = BADREMOTE;)
else / hp is now ready for this file e/{

errorcode = sendafile(filenum);
close(filenum);

I

* . return(errorcode);

} /e end of sendfromvax e/

U

/ getfromhp - procedure to receive a file from the hp using
the reovafile routine after initiating communication with
the hp over the net.
If a file already exists with the same name, this routine
will append '.new' to the filename to avoid overwriting
the already existing file.
Returns 0 if the file is received OK,
else returns an error code

getfromhp(srcfile,deatfile)

char srcfile[]; /0 name of file to be recv'ed from hp '/
char deatfile[]; /* name to call file at this end '1

int filenum; /* file number returned by creat 6/
char packet[40]; /0 packet used to initiate comm /
int packlen; /* length of finished packet 6/
int errorcode; /I returned error code /
int packtype; /6 type of packet recv'ed from

senderrorfree 6/

/9 send a SENDFILE packet to initiate communication with the hp.
Includes srcfile name as data portion of the packet. 6/

strcpy(&packet[6],srcfile);

72

assem(SENDFILE,O,strlen(srcfile),packet,&packlen);
packtype = senderrorfree(packet,packlen);

if (packtype == NOTOK) /0 not sent 0/{
fprintf(stderr,"Remote machine does not respond\n");
errorcode a BADREMOTE;

else /e check if hp is ready to send e/
if (packtype == NAKFILE)

fprintf(stderr,
"Error: can't open %s on remote machine\n",

srcfile);
errorcode z BADOPENHP;

else /0 hp is now going to start sending the file 0/

/0 check if a file already exits with same name */
if (open(destfile,O) I= -1) /0 if it exists "

/* rename file to be xxxx.new 0/
strcat(destfile,".new);.

/0 now create file and receive it from the net 0/

filenum = creat(destfile,0755);
errorcode = recvafile(filenum);
close(filenum);I

return(errorcode);

)/0 end of getfromhp 0/

/0 initialize - open controller's ports and init. network addresses 6/

/0 returns 0 if initialized ok, else raturns an error code 0/

initialize(){
int errorcode; /* error code to be returned 0/
nt temp; /* temp variable for address 0/

/0 init controller's port 0/

if ((errorcode initcontrollero) = 0) /' opened ok 0/

/0 init network addresses 0/

I

73

if ((temp findaddress() -1) /e controller dead /

fprintf(stderr,"Controller on VAX is dead\n");
errorcode = CONTDOWN;I

else /0 init addresses. assumes only 2 stations 0/
if (temp == Oxif){

srcaddress = Oxif;
destaddress = Ox2f;

else
• (

sreaddress = Ox2f;
destaddress = Oxif;

4F return(errorcode);

/0 sendafile - sends a file to the remote machine using a stop-and-wait
protocol with positive acknowledgement and retransmission.

*Enter this routine with the file descriptor (ie. the file must be
already opened) and the remote machine ready and waiting to
receive the file.

sendafile(filenum)

int filenum; /6 file number of opened file to send 0/

int errorcode; /0 returns an errorcode e/
char packet[PACKETSIZE]; /0 holds packets of file 0/
int packlen; /0 length of assembled packet 0/

int datalen; /0 length of data portion 0/
int seqnum = 1; /4 sequence number of packets 1/
int ackflag = ACKFILE; /* indicates if packets being ack'ed 0/

/0 send the file as packets while not end-of-file 0/

I".
while C ((datalen = read(filenum,&packet[6],DATASIZE)) > 0)

&& (ackflag == ACKFILE))

/0 assemble and send the packets 0/

74

assem(DATAFILE,seqnum,datalen,packet,&packlen);
ackflag = senderrorfree(packet,packlen);
seqnum = incseq(seqnum); /* increment seq. num I/}

/6 send "END" packet, wait for ack 9/

assem(ENDFILE,seqnum,O,packet,&packlen);
ackflag = senderrorfree(packet,packlen);

/3 send ENDREPLY, do not wait for ack 3/

seqnum = inoseq(seqnum);
assem(ENDREPLY,seqnum,O,packet,&packlen);
sendpacket(packet,packlen);

/0 return error code 3/

if (ackflag == ACKFILE) /0 all packets ack'ed 3/
errorcode = NOERROR;

else errorcode = XMITERROR;

return(errorcode);

/* end of sendafile 3/

/0 recvafile - receives a file from the remote machine using a
stop-and-wait protocol. Acks received packets and saves
non-duplicated packets.
Enter this routine with the file descriptor
(ie. the file must be already created and opened)
and the remote machine already set-up to begin
sending data packets.

3/

recvafile(filenum)

int filenum; /I file number of opened file in which to
store the incoming file. 3/

char packet[PACKETSIZE]; /0 received packet 3/
int packlen; /0 length of received packet 0/
int packtype = DATAFILE; /* type of recv'ed pack, t */

75

U mt datalen; /0 length of data portion 0

int segnum; /0 sequence number of recv'ed packet 0/
int expeetnum =1; /* expected sequence number 0

int doneflag =F; /0 indicates when done 0

/0 receive, ack, and store packets untile ENDFILE received 0/

while (packtype z= DATAFILE)

if (recvpacktime(packet,&packlen) OK)

disassem(packet, &packtype, &seqnum, &datalen);
if ((packtype == ATAFILE) && (seqnum ==expeotnum))

writeC filenum,&packet[6J ,datalen);
expectnum = ineseq(expectnum);

/0 ack the packet 0

assem(ACKFILE, seqnum, 0,packet,&packlen);
sendpacket(packet, packlen);

3 1' perform end-dally sequence of protocol
Wait for ENDREPLY (to ACK of ENDFILE) or timeout,
whichever comes first.
Timeout or ENDREPLY both mean done. If recv'ed packet

* is ENDFILE, sen~der didn't get ACK, so retransmit it. 6

U while (doneflag == F)
if (recvpacktime(packet,&packlen) a= OK)

disassem(packet, &packtype, &seqrium,&datalen);
if (packtype 5= ENDREPLY) /* got ack, so done 0/

doneflag aT;
else /6 retransmit ACK *

asseuC ACKFILE,seqnum,O ,packet,&packlen);
sendpacket(packet, packlen);

else /0 timed out, so done 0

doneflag =T;

return(NOERROR);

* 1 /* end of recvafile 0/

76

/0 ineseq -increment the sequence number. Returns the new sequence
number. 0

incseq(n)

int n; /0 number to be incremented 0

n =(n + 1) %256; /0 modulo 256 0

return(n);

/0 senderrorfree -sends a packet and waits for an ACK
from the receiver.
If no ACK, times out and retransmits until a packet
comes or it has tried HAXCOUNT times.
Peturas type of packet received, if one was received,
or NIOTOK if no packet is ever received 0

senderrorfree(packet, packlen)

char packet[]; /0 packet to be sent 0/
int packlen; /* length of the packet 0

char rcvpack[50J; /0 received ACK packet 0/
mnt rlength; /9 length of ACK packet 0/
mnt count = 0; /0 counter for number of xmit tries 9/
int rtnflag z NOTOK; /* flag to be returned 0/

/6 send the packet 0

sendpacket(packet, packlen);

/0 wait for ACK with time out, re-xmit up to MAXCOUNT times

while C((rtnf lag = recvpacktime(rcvpack,&rlength)) 1= OK~)
&& (++..count < MAXCOUNT))

sendpacket(packet,packlen); /0 retranznmit packet V1

/0 cheek if a packet was received 0

if (rtnflag ==OK) /0 packet recv'ed 0/
rtnflag m rcvpack[21; /0 packet type 0

/0 return the flag 0/
return(rtnflag);

77

/0 assem- assembles a packet into the required form, ie. prepends
addresses, etc. onto data already stored in "top" portion of
packet.

assem(packtype,seqnum,datalen,packet,packlen)

tnt packtype; /0 type of packet e/
int seqnum; /0 sequence number e/
int datalen; /0 length of data portion e/
char packet[]; /0 returns assembled packet; enter

with data already in packet el
int epacklen; /e returns length of assembled packet 6/

/0 assemble the packet 6/

- packet[O] = destaddress;
packet[l] = srcaddress;
packet[2] = packtype;

packet[3] = seqnum;
packet(4] = datalen / 256; /1 truncates fraction 6/

* packet[5] = datalen - (256 * packet[4]);

* . /0 return packet length 6/

epacklen = datalen + 6;

-, J., /e end of assem 6/

- /6 disassem - disassembles a packet.

Returns via pointers the packet type, the sequence number,
and the length of the data portion.

* - disassem(packet,packtype,seqnum,datalen)

har packet[]; /0 packet to be disassembled I/
4 nt Opacktype; /* returns packet type e/
int Oseqnum; /0 returns sequence number 6/

int *datalen; /* returns length of data portion ,/

int thigh; /e temporaries for type conversion 0/
int tlow;

/I disassemble the packet 0/

-:7

78

"packtype - packet[2];
Oseqnum = packet[3] & 0377; / only want lower 8 bits 0/
thigh = packet[4] & 0377; /* no sign extension 0/
tlow = packet[5] & 0377; /0 no sign extension /
*datalen = 256 thigh + tlow;

%)

l* sendpacket - send a single packet. addresses are embedded within

the packet. returns OK if good transmission, NOTOK otherwise

sendpacket(packet, length)

char packet[]; /0 packet to be sent /
int length; /1 length of packet 1/

char reply; /0 controller's replies to host 0/
char status; /0 status byte from controller /1
int xmitflag = NOTOK; / hold OK or NOTOK 0/
char lenlow; / low-order byte of length /
char lenhigh; / high-order byte of length /.
int i; /* index in loop 9/

/0 split length into high- and low-order parts 0/

lezL-ligh =length /256; /9 truncates fraction/
len_low = length- (len_high ' 256);

/0 ready controller to xmit "

sendcontrol ler(SEND);
reply = readcontrollero;
status - readcontroller();

if (reply == SOH) /* controller ready I/
sendcontroller(lenlow);
sendcontroller(lenhigh);

reply = readcontroller);
status = readcontrcllero;

if (reply AzCK) / controller ready 0/

for (i=O; i<length; ++i) /0 send packet 0/

sendcontroller(packet[i]);
reply = readcontroller();

-.. .

79

status = readcontrollero;

* if (reply := ACK) /0 it worked 0/
xmitflag OK;

s

return(xmitflag);

. / recvpacket - receives a packet from the ethernet with this
stations's address or the broadcast address.
returns OK if recv'd OK, NOTOK otherwise.
values of packet and length returned via pointers
cancels receive command if not received OK /

*;i recvpacket(packet,plength)

char packet[]; /0 contents of packet received /
nt *plength; / pointer to length. Returns length of

.. packet to calling routine '/

char reply; /2 controller's replies to host 0/
" char status; /0 status byte from controller 6/

char leL.low; /1 low-order byte of length /
char len-high; /* high-order byte of length a/

P int i; /* index in loop '/
int rcvflag = NOTOK; /9 holds OK or NOTOK 0/

/0 tell controller to receive packet 6/

sendeontroller(REC);
reply a readcontroller(;
status = readcontrollero;

/* check if packet recv'd OK 0/

if (reply == ACK) / packet OK 6/
(

/0 read length 6/
sendcontroller(SOH);
len.low = readcontrollero;
len_high = readcontrollero;
sendoontroller(ACK);

/0 read the packet 6/
'plength z (256 * lenhigh) + l,.n_low;
for (i=O; i < Oplength; +i)

L.. -- _ ._. . : . . _ . -"

80

packet[i] readcontrollero);
sendcontroller(ACK);
rcvflag OK;

else cancel(); /* not recv'd ok 0/

return(rcvflag);

II

/I recvpacktime - receives a packet with time-out. Returns OK

if packet received ok, or NOTOK if packet damaged or
time-out occurred.
Values of packet and plength are returned via pointers.
It cancels the receive request if no received ok or time-out.

recvpacktime(packet,plength)

char packet[]; /0 contents of packet received 0/
int *plength; /0 pointer to length. Returns length of

packet to calling routine 0/

int reply; /0 controller's replies to host 0/

int status; /0 status byte from controller 0/

char lenlow; / low-order byte of length 0/

char len_high; /0 high-order byte of length 0/

int i; /* index in loop
int rcvflag = NOTOK; /0 holds OK or NOTOK 0/

/4 tell controller to receive packet i/

sendcontroller(REC);

if ((reply = read_timeouto) -1) /0 time-out occurred 0/

reply z NAK;
else status = readcontrollero; /0 read next character 0/

* . /* check if packet recv'd OK O

if (reply zz ACK) /0 packet OK 0/

/* read length ./

sendcontroller(SOH);
len_low = readcontrollero);
lenhigh z readcontrollero;
sendcontroller(ACK);

81

/0 read the packet 0/
Oplength z (256 0 len~high) + lenlow;
for (i=O; i < Oplength; i)

packet[i] z readcontrollero);
sendcontroller(ACK);
rcvflag - OK;

else cancel(); /0 not recv'd OK '/

return(rcvflag);

/0 cancel - send cancel command to controller 0/

cancel(){
char reply; /0 controller's reply to CAN 0/
char status; /0 also sends status byte a/

/* send CAN, read reply and status 0/

sendcontroller(CAN);
reply readoontrollero;p status = readcontrollero;

/0 find the ethernet station address of the controller 0/
/0 uses the ENQ command. returns value of address 0/
/0 or -1 if controller doesn't r-espond, ie. times-out. 0/

findaddress()

int status; /0 status byte re. rned from controller 0/

/9 send ENQ to controller */

sendoontroller(ENQ);

* 82

/0 read status, read and return address 0/

if ((status = read-timeouto) 1z -1) / no time out */
return(readcontrollero); /* address byte /

else return(-1); /* time out, so return -1 for error 0/

/ initcontroller - open and init. tty port to talk to controller */

inLtcontroller()

/0 structure to initialize tty port to controller 0/

static struct sgttyb ttyb = {
B9600, B9600,
0, O,
RAW I ANYP

int errorcode = 0; /* returned error code 0/

/6 open controller's tty port 0/

if C (controller = open(TTY,2)) -1) / couldn't open /

fprintf(stderr,"Couldn't open controller's port\n");
fprintf(stderr,

"It must be busy (or dead). Try again later\n");
errorcode = NOCONTOPEN;

else /9 opened OK so configure port for RAW, 9600 baud 0/
if (stty(controller,&ttyb) I= 0) /* couldn't configure '/

fprintf(stderr,
"Couldn't configure controller's port.\n");

errorcode = NOCONFIG;

else /0 set for exclusive access 0/

ioctl(oontroller,TIOCEXCL,O);

return(errorcode);

J

.7 83

U /0 sendcontroller -send a byte to controller 0/

sendcontroller(byte)

char byte; /0 byte to be sent 0

- /0 send the byte, print error if not sent OK

if (write~controller, &byte# 1) I= 1)
fprintf(stderr,"Can't write controller\n");

* /0 readoontroller -returns byte read from controller 0

readcontroller()

char byte; /* byte read in 0/

/0 read byte, print error if not read OK 0

if (read(control~ar, &byte, 1) I= 1)
fprintf(stderr, "Can' t read controller\n");

else return(byte);

/0 read from controller with time-out. returns -1 if time-out,
else returns byte read. 0

read_timeout()

mnt byte; /9 byte read from controller 0/
int onairmo; /0 procedure when time-out occurs 0/

/0 set-up signal, alarm for TIMEOUT seconds '

timedout x F;
signal(SIGALRM, onalrm);
alarm(TIMEOUT); /0 set alarm 0

read(oontroller,&byte, 1);
if (timedout ::T) /0 time-out occurred 0

* -- . -. . .84

byte =-1;

alaruC 0); 19 turn off alarm 0/
return(byte);

/0 sets time-out flag to T when time-out occurs 0

onalrm()

timedout =T;

85

Appendix 4~

The network daemon for the HP 3000

86

$CONTROL USLINIT

BEGIN
COMMENT:

THIS PROGRAM SENDS AND RECEIVES FILES OVER THE ETHERNET
USING THE 'ETHERNET FILE TRANSFER PROTOCOL.'
IT IS INTENDED TO RUN CONTINUOUSLY AS A STREAMED JOB AND
TAKES ITS COMMANDS TO SEND/RECEIVE FILES BY LISTENING TOTHE NET.
ERROR MESSAGES ARE DIRECTED TO THE SYSTEM CONSOLE.

END OF COMMENT;

<< GLOBAL VARIABLE DECLARATIONS >>

INTEGER CONTIN; << FILE # OF CONTROLLER INPUT PORT >>
INTEGER CONTOUT; << FILE # OF CONTROLLER OUTPUT PORT >>
INTEGER DESTADDRESS; << ADDRESS DESTINATION CONTROLLER >>
INTEGER SRCADDRESS; << ADDRESS SOURCE CONTROLLER >>
BYTE ARRAY MSGB(0:80); << I/O BUFFER FOR TERMINAL >>
LOGICAL ARRAY MSG(*)=MSGB(O);<< PRINT BUFFER -- "WORD" EQUATE >>
INTEGER TIMEDOUT; << FLAG INDICATES THAT A TIME-OUT >>

<< OCCURRED WHEN READING CONTROLLER >>
INTEGER RENAMENUM; << USED TO GIVE A UNIQUE NAME TO A >>

<< FILE IF ONE ALREADY EXISTS WITH >>
<< THE SAME NAME >>

<< VARIABLES USED BY MAIN PROGRAM ONLY >>

BYTE ARRAY COMPACK(0:50); << COMMAND PACKET FROM REMOTE MACH. >>
INTEGER COMLENGTH; << LENGTH OF COMPACK >>
INTEGER RFLAG; << RECEIVE FLAG FOR COMPACK >>
INTEGER COMTYPE; << TYPE OF COMMAND RECV'ED >>
INTEGER COMSEQNUM; << SEQUENCE NUMBER OF COMPACK >>
INTEGER NAMELEN; << LENGTH OF NAME IN DATA PORTION >>

<< OF COMPACK >>

<< DEFINE PACKET TYPES >>

EQUATE ACKFILE = 1, << PACKET RECEIVED OK BY RECEIVER END >>
NAKFILE = 2, << REQUESTED FILE DOES NOT EXIST >>
DATAFILE = 3, '?ACKET CONTAINS FILE DATA
ENDFILE = 5, << END OF FILE >>
ENDREPLY = 6, << ACK FOR 'ENDFILE' >>
SENDFILE = 7, << PREPARES RECEIVER TO SEND FILE NAMED >>

<< IN 'DATA' PORTION OF PACKET >>

87

RECFILE 8; << PREPARES RECEIVER TO READ AND SAVE >
<< FILE NAMED IN 'DATA' PORTION OF PACKET >>

<< DEFINE COMMAND BYTES TO/FROM CONTROLLER >>

EQUATE ACK = %(16)06, << ACKNOWLEDGEMENT -- ALL OK >>
NAK = %(16)15, << NEGATIVE ACK - ERROR HAS OCCURED >>
ENQ = %(16)05, << ENQUIRE - RETURN STATUS & ADDRESS >>
SND = 5(16)11, << SEND THE FOLLOWING PACKET >>
SOH = %(16)01, << START OF HEADER - DEVICE SENDING IS >>

<< REQUESTING THE PACKET LENGTH >
REC = %(16)12, << RECEIVE PACKET FROM ETHERNET >>
CAN = 5(16)18; << CANCEL LAST RECEIVE REQUEST >>

<< DEFINE CONSTANTS >>

EQUATE PACKETSIZE = 126, << MAXIMUM SIZE OF PACKETS >>
* .DATASIZE = PACKETSIZE - 6, << SIZE OF DATA IN PACKET >>

MAXCOUNT = 6, << MAXIMUM NUMBER OF TRIES BEFORE >>
<< ABORTING TRANSMISSION ATTEMPT >>UOK = 1, <(FLAG FOR "OK >>

NOTOK = 0, << FLAG FOR "NOTOK" >>
TIMEOUT = 5, << 'READ' TIME-OUT INTERVAL >>
NOTIMEOUT = 0, << PARAM FOR NO TIME-OUT ON READ >>
THU = 1, << TRUE FLAG >>
FALS = 0; « FALSE FLAG >

<< INTRINSIC DECLARATIONS >>

INTRINSIC READ, PRINT, BINARY,FREADFWRITE,FOPEN, FSETMODE,
FCONTROL, IOWAIT, GETPRIVMODE, GETUSERMODE ,ASCII,
FCLOSE, FRENAME, PRINTOP;

«........ PROCEDURE DECLARATIONS >>

<< RWCNTLR OREAD/WRITE FROM CONTROLLER >>

'AD-A14 448 A LOCAL COMPUTER NETNORK IMPLEMENTATION USING ETHERNET 2/2
(U) ILLINOIS UNIV AT URBANA COORDINATED SCIENCE LAB
D J LILJA AUG 82 R-946 N99839-89 C-9556

UNCLASSIFIED F/G 9/2 NLEIIIIIEEEIII

ILI

UNCLAm o m mm m o m I I I oiFEN

r7 ,

V

I .

.:

1 1

,i

2 1 2 .

1111_265
_

NATIONAL BUREAU OF STANDAR S-963-A

'*~
-.

1.2

II1' ,-_

88

COMMENT: BECAUSE OF THE LACK OF BUFFERING ON INPUT PORTS,
MUST FIRST SET-UP READ, THEN WRITE, THEN FINISH
READ. THAT IS, CONTROLLER RESPONDS TOO QUICKLY
FOR HP TO CATCH IN NORMAL I/O ;

PROCEDURE RWCNTLR(INBUFFBINLEN, OUTBUFFB, OUTLEN,TIME);

VALUE OUTLEN, << PASS THESE BY VALUE >>
TIME,
INLEN;

BYTE ARRAY INBUFFB; << INPUT BUFFER TO CONTROLLER >>
<< RETURNS WITH DATA READ FROM CONTROLLER >>

INTEGER INLEN; << NUMBER OF BYTES TO READ FROM CONT >>
BYTE ARRAY OUTBUFFB; << OUTPUT BUFFER TO CONTROLLER >>

<< ENTER WITH DATA TO SEND TO CONT >>
INTEGER OUTLEN; << NUMBER OF BYTES TO SEND TO CONT >>
INTEGER TIME; << TIME-OUT INTERVAL - 0 MEANS NO TIME-OUT >>

BEGIN
LOGICAL ARRAY INBUFF(*)=INBUFFB(O); << EQUATE TO ELIMINATE >>
LOGICAL ARRAY OUTBUFF(*)=OUTBUFFB(O); << WARNING MESGS >>
INTEGER DUMMY; << HOLDS RETURNED VALUE FROM IOWAIT, FREAD >>
INTEGER PARAM; << USED IN FCONTROL FOR TIMEOUT >>

<< INIT. TIME-OUT FLAG >>
TIMEDOUT := FALS;

<< SET TIME-OUT INTERVAL >>
PARAM := TIME;
FCONTROL(CONTINiIPARAM);

<< SET-UP READ, NO WAIT FOR FINISH >>
DUMMY := FREAD(CONTIN,INBUFF,-INLEN);

<< WRITE BUFFER TO CONTROLLER >>
FWRITE(CONTOUT, OUTBUFF, -OUTLEN, % 320);

-1<< FINISH READ, RETURN BUFFER AND LENGTH >>
DUMMY : z IOWAIT(CONTIN, INBUFF);
IF < THEN

BEGIN
TIMEDOUT : TRU;

END;

END; << RWCNTLR >>

R. ": "'-89

<< FIND ETHERNET STATION ADDRESS OF THE CONTROLLER USING ENQ >>
<< COMMAND. RETURNS ADDRESS IN 'ADDRESS' PARAMETER. >>

PROCEDURE FINDADDRESS(ADDRESS);

* INTEGER ADDRESS; << RETURNS ETHERNET STATION ADDRESS >>

. BEGIN
BYTE ARRAY BUFF(0:1); << IO BUFFER FOR CONTROLLER >>

<< LOAD 'ENQ' INTO BUFFER >>
BUFF(O) := ENQ;

<< SEND TO CONTROLLER, READ STATUS AND ADDRESS >>
RWCNTLR(BUFF,2,BUFF,1,TIMEOUT);

<< RETURN ADDRESS IF NO TIME-OUT >>
IF TIMEDOUT = FALS

THEN ADDRESS := INTEGER(BUFF(1))
ELSE ADDRESS := 0;

END; << FINDADDRESS >>

<< INITIALIZE CONTROLLER'S PORTS, INIT STATION ADDRESSES >>

* . PROCEDURE INITIALIZE;

" "BEGIN

INTEGER LENGTH; << TEMP STORAGE OF RETURNED VALUE FROM READ >>
*INTEGER CNTLCODE; << CONTROL CODE FOR FCONTROL >>

BYTE ARRAY TTYIN(0:8); << INPUT PORT >>
BYTE ARRAY TTYOUT(0:8); << OUTPUT PORT >>
INTEGER TEMP; << TEMP VARIABLE FOR ADDRESS INITIALIZATION >>

<< INIT TTYIN AND TTYOUT >>

MOVE TTYIN ." "ENETIN;";
MOVE TTYOUT := "ENETOUT;";

S<< OPEN AND INIT CONTROLLER'S PORTS >>

GETPRIVMODE; << FOR NO-WAIT I/O >>
CONTIN := FOPEN(,4604,432i,-36,TTYIN);

• . -'. . - . -. •: - . -.. .• . . : . . . : _ . / . : . _ :, i - "

90

IF > THEN BEGIN << CAN'T OPEN >>
MOVE MSGB := "ETHERNET - CAN'T OPEN INPUT PORTN;
PRINTOP(MSG,-32,O);

END;
GETUSERMODE; << NO MORE NEED FOR PRIV MODE >>

CONTOUT :- FOPEN(,%604,324,-36,TTYOUT);
IF > THEN BEGIN << CAN'T OPEN >>
MOVE MSGB :z "ETHERNET - CAN'T OPEN OUTPUT PORT";
PRINTOP(MSG,-33,0);

END;

CNTLCODE := %0V4022; << SPEED, TEEMTYPE >>
FCONTROL(CONTIN,37,CNTLCODE); << ALLOCATE TERMTYPE 18 AT >>
FCONTROL(CONTOUT,37,CNTLCODE); << 9600 BAUD >>

FSETMODE(CONTIN%4); << INHIBIT AUTO CR-LF ON INPUT >>

FCONTROL(CONTIN,13,CNTLCODE); << ECHO OFF >>
FCONTROL(CONTOUT, 13 ,CNTLCODE);

FCONTROL(CONTIN,20,CNTLCODE); << DISABLE INPUT TIMER >>

FCONTROL(CONTIN,28,CNTLCODE); << DISABLE BLOCK MODE >>
FCONTROL(CONTOUT, 28, CNTLCODE);

FCONTROL(CONTIN,27,CNTLCODE); << ENABLE BINARY TRANSFERS >>
FCONTROL (CONTOUT, 27,CNTLCODE);

CNTLCODE := 0;
FCONTROL(CONTIN,36,CNTLCODE); << NO PARITY, FULL 8 BITS >>
FCONTROL(CONTOUT,36,CNTLCODE);

<< INIT. SRC AND DEST ADDRESSES. ASSUMES ONLY 2 STATIONS >>

FINDADDRESS(TEMP);
IF TIMEDOUT z TRU << CONTROLLER DEAD >>

THEN BEGIN << PRINT ERROR MESSAGE >>
MOVE MSGB :a 'ETHERNET CONTROLLER IS DEAD. TRY RESETTING.";
PRINTOP(MSG,-43,O);

END << THEN >>
ELSE << INIT. ADDRESSES >>

IF TEMP z %(16)1F
THEN BEGIN

SRCADDRESS :f %(16)IF;
DESTADDRESS :% (16)2F;

END
ELSE BEGIN

SRCADDRESS %: (16)2F;
DESTADDRESS :x %(16)1F;

. .

91

F END;

END; << INITIALIZE >>

<< SENDPACKET -SEND A SINGLE PACKET. ADDRESSES ARE EMBEDDED >>
<< WITHIN THE PACKET. RETURNS JCMITFLAG = OK IF GOOD >
<< TRANSMISSION, NOTOK OTHERWISE. LEAVES PACKET UNCHANGED. >>

PROCEDURE SENDPACKET(PACKET, LENGTH, D4ITFLAG);

VALUE LENGTH; << PASS BY VALUE >>

BYTE ARRAY PACKET; << PACKET TO BE SENT WITH EMBEDDED ADDRESS >>
INTEGER LENGTH; << LENGTH OF PACKET IN BYTES >>
INTEGER XMITFLAG; << RETURNS 'OKI OR 'NOTOK' >>

BEGIN
BYTE ARRAY BUFF(0:1); << BUFFER FOR SENDING COMMANDS >>

<< TO/FROM CONTROLLER >

<< INIT XMITFLAG >>
XMITFLAG := NOTOK;

<< READY CONTROLLER TO XMIT BY SENDING 'SND'. >>
<<« READ REPLY AND STATUS >

BUFF(0) :SND;
RWCNTLRCBUFF,2,BUFF,1,TIMEOUT); << SEND 1 BYTE, READ 2 BYTES >>

IF BUFF(O) z SOH AND TINEDOIJT P ALS << REPLY IS SOH >>
THEN BEGIN << SEND LENGTH, READ REPLY AND STATUS >>

BUFF(O) := BYTE(LENGTH.(8:8)); << LOW-ORDER 8 BITS >>
BUFF(l) :z BYTE(LENGTH.(0:8)); << HIGH-ORDER 8 BITS >>
RWCNTLR(BUFF,2tBUFFq2,TIMEOUT); << READ/WRITE 2 BYTES >>

IF BUFF(O) c ACK << CONTROLLER READY FOR PACKET >>
THEN BEGIN << SEND PACKET, READ REPLY, STATUS >>

RWCNTLR(BUFF,2, PACKET,LENGTH,TIMEOUT);
IF BUFF(O) aACK << IMIT OK >>

THEN XMITFLAG ::OK;
END;

END;

END; << SENDPACKET >>

. .. . -

92

<< CANCEL - SEND CANCEL COMMAND TO CONTROLLER >>

PROCEDURE CANCEL;

BEGIN

BYTE ARRAY BUFF(0:1); << BUFFER FOR COMMANDS TO/FROM CONT >>

<< SEND 'CAN', READ REPLY AND STATUS >>

BUFF(O) := CAN;
RWCNTLR(BUFF,2,BUFF,1,TIMEOUT); << SEND 1 BYTE, READ 2 >>

END; << CANCEL >>

<< RECVPACKET - RECEIVES A PACKET FROM THE ETHERNET WITH THIS >>

<< STATION'S ADDRESS OR THE BROADCAST ADDRESS. RETURNS WITH >>

<< RCVFLAG = OK IF RECEIVED OK, NOTOK OTHERWISE. CANCELS >>
<< RECEIVE COMMAND (WITH 'CAN') IF NOT RECEIVED OK. >>
<< ALLOWS SETTING OF TIM-OUT INTERVAL FOR READ OF CONTROLLER >>

PROCEDURE RECVPACKET(PACKETLENGTH,RCVFLAG,TIME);

VALUE TIME; << PASS BY VALUE >>

BYTE ARRAY PACKET; << RETURNS WITH PACKET RECEIVED >>
INTEGER LENGTH; << RETURNS LENGTH OF RECEIVED PACKET >>

-' INTEGER RCVFLAG; << RETURNS 'OK' OR 'NOTOK' >>
INTEGER TIME; << INDICATES TIME-OUT INTERVAL TO WAIT FOR >>

<< PACKET. 0 MEANS WAIT FOREVER. >>
"-ii

BEGIN
BYTE ARRAY BUFF(0:1); << BUFFER FOR SENDING COMMANDS >>

<< TO/FROM CONTROLLER >>

<< INIT. FLAG >>
RCVFLAG :x NOTOK;

<< TELL CONTROLLER TO RECEIVE PACKET. WAITS UNTIL PACKET >>
<< IS RECEIVED. >>

BUFF(O) : REC;

- - -- -" AM* -

93

RWCNTLR(BUFF,2,BUFFt,TIME); << SEND 1 BYTE, READ 2 BYTES >>

<< CHECK IF PACKET RECEIVED OK >>

IF BUFF(O) - ACK AND TIMEDOUT a FALS << PACKET OK >>
THEN BEGIN

<< SEND 'SOH', READ LENGTH >>
BUFF(O) := SOH;
RWCNTLR(BUFF,2,BUFFITIME); << SEND 1 BYTE, READ 2 BYTES >>
LENGTH := 256 9 BUFF(1) + BUFF(O);

<< SEND 'ACK', READ PACKET >>
BUFF(O) := ACK;

• RWCNTLR(PACKET,LENGTH,BUFF, 1,TIME);

<< SEND CONTROLLER FINAL 'ACK' >>
BUFF(O) := ACK;
RWCNTLR(BUFF,O,BUFF,1,Tn); << SEND 1 BYTE, READ NO BYTES >>

<< RETURN FLAG 'OK' >>
RCVFLAG := OK;

END << THEN >>

ELSE CANCEL; << NOT RECEIVED OK, SO CANCEL 'RECt >>

END; << RECVPACKET >>

U

<< ASSEMBLE - ASSEMBLE A PACKET INTO THE REQUIRED FORM >>
<< ENTER ROUTINE WITH DATA ALREADY STORED IN HIGH PART OF PACKET >>

PROCEDURE ASSEM(PACKTYPESEQNUM,DATALEN,PACKET,PACKLEN);

VALUE PACKTYPE, << PASS THESE BY VALUE >>
SEQNUM,
DATALEN;

INTEGER PACKTYPE; << TYPE OF PACKET >>
INTEGER SEQNUM; << SEQUENCE NUMBER >>
INTEGER DATALEN; << LENGTH OF DATA PORTION >>
BYTE ARRAY PACKET; << RETURNED ASSEMBLED PACKET >>
INTEGER PACKLEN; << RETURNED LENGTH OF ASSEMBLED PACKET >>

BEGIN

<< ASSEMBLE THE PACKET >>

PACKET(O) : BYTE(DESTADDRESS);

• • o . * , ,

9.

PACKET(1) :- BYTE(SRCADDRESS);
PACKET(2) := BYTE(PACKTYPE);
?ACKET(3) : BYTE(SEQNUM);
PACKET(M) :- BYTE(DATALEN.(0:8)); << HIGH-ORDER 8 BITS >>
PACKET(5) :s BYTE(DATALEN.(8:8)); << LOW-ORDER 8 BITS >>

<< RETURN PACKET LENGTH >>
PACKLEN :a DATALEN + 6; << ADD HEADER BYTES >>

END; << ASSD4 >>

<< DISASSEM - DISASSEMBLE A RECEIVED PACKET INTO COMPONENT PARTS >>

PROCEDURE DISASSEM(PACKET, PACKTYPE, SEQNUM, DATALEN);

BYTE ARRAY PACKET; << PACKET TO BE DISASSEMBLED >>
INTEGER DATALEN; << RETURNED LENGTH OF FDATA >>
INTEGER PACKTYPE; << RETURNED TYPE OF PACKET >>
INTEGER SEQNUM; << RETURNED SEQUENCE NUMBER >>

BEGIN
<< DISASSEMABLE THE PACKET >>

PACKTYPE := INTEGER(PACKET(2));
SEQNUM :- INTEGER(PACKET(3));
DATALEN : INTEGER(256 * PACKET(PACKET(5));

END; << DISASSEM >>

<< INCSEQ - INCREMENT A SEQUENCE NUMBER >>

PROCEDURE INCSEQ(N);

INTEGER N;

BEGIN
N :a (N + 1) MOD 256;

END; << INCSEQ >>

.,.

95

U

<< RENAME - RENAMES A FILE BY ADDING OR REPLACING THE LAST
CHARACTER IN THE FILENAME WITH THE ASCII EQUIVALENT OF
THE GLOBAL VARIABLE RENAMENUM.
A FILENAME IS OF THE FORM 'FILENAME.GROUP.ACCOUNT;'
WHERE THE GROUP AND ACCOUNT ARE OPTIONAL. >>

PROCEDURE RENAME(FILENUM, OLDNAME);

INTEGER FILENUM; << FILE DESCRIPTOR >>
BYTE ARRAY OLDNAME; << OLD NAME OF THE FILE >>

BEGIN
BYTE ARRAY NEWNAME(0:30); << NEW NAME OF FILE >>

f INTEGER NEWI; << INDEX FOR NEWNAME >>
INTEGER OLDI; << INDEX FOR OLDNAME >>
INTEGER TEMP; << TEMP. FOR USE IN ASCII CALL >>

<< MOVE OLD NAME INTO NEW NAME UNTIL FIND ; OR >>

5 OLDI ::0;
NEWI O;
DO BEGIN

* "NEWNAME(NEWI) := OLDNAME(OLDI);
* .NEWI :- NEWI + 1;

OLDI := OLDI + 1;
END

* UNTIL OLDNAME(OLDI) =;" OR OLDNAME(OLDI) = " " ;

<< IF 8 CHARS. IN FILENAME, REPLACE LAST CHAR. WITH RENAMENUM,
* ELSE APPEND RENAMENUM. TO FILENAME. >>

IF OLDI z 8
STHEN << REPLACE LAST CHAR >>

TEMP :z ASCII(RENAMENUMIO,NEWNAME(NEWI - I))
ELSE BEGIN << APPEND NEW CHAR >>

: ""TEMP := ASCI T(RENAMENUM, 1 0,NEWNAME(NEWI));
'" NEWI :z NEWI + 1; << POINT TO NEXT CHAR. >>

END; << ELSE >>

<< MOVE REMAINING CHARS. >>

DO BEGIN
NEWNAME(NEWI) :u OLDNAME(OLDI);
NEWT :s NEWI + 1;
OLDI :a OLDI + 1;

UNTIL OLDNAME(OLDI) a

96

<< APPEND A ; >>
NEWNAME(NEWI) :u *;" ;

<< RENAME THE FILE >>
FRENAME(FILENUM,NEWNAME);

<< INCREMENT RENAMENUM >>
RENAMENUM :- (RENANENUM + 1) MOD 10;

END; << RENAME >>

<< SENDERRORFREE - SENDS A PACKET AND WAITS FOR AN ACK FROM THE
RECEIVER. IF NO ACK, TIMES OUT AND RETRANSMITS UNTIL A
PACKET COMES OR IT HAS TRIED MAXCOUNT TIMES.
RETURNS THE TYPE OF PACKET RECEIVED, IF ONE WAS RECEIVED, OR
'NOTOK' IF NO PACKET RECEIVED AT ALL. >>

PROCEDURE SENDERRORFREE(PACKETLENGTH,RCVTYPE);

BYTE ARRAY PACKET; << PACKET TO BE SENT >>
INTEGER LENGTH; << LENGTH OF PACKET IN BYTES >
INTEGER RCVTYPE; << RETURNS NOTOK, OR TYPE OF PACKET RECV'ED >>

BEGIN
BYTE ARRAY RCVPACK(0:50); << RECEIVED ACK PACKET >>
INTEGER RLENGTH; << LENGTH OF RECVIED PACKET >>
INTEGER RCVFLAG; < FLAG RETURNED FROM 'RECYPACKET >>
INTEGER XITFLAG; << FLAG RETURNED FROM SENDPACKET' >>
INTEGER COUNT; << NUMBER OF XMIT ATTEMPTS >>

<< INIT. VARIABLES >>
COUNT := 0;
RCVFLAG := NOTOK;

<< SEND THE PACKET, WAIT FOR ACK, RETRANSMIT UP TO MAXCOUNT >>
WHILE RCVFLAG z NOTOK AND COUNT < MAXCOUNT DO

BEGIN
SENDPACKET(PACKETLENGTH,XMITFLAG);
RECVPACKET(RCVPACKRLENGTH, RCVFLAG, TIMEOUT);
COUNT : COUNT + 1;

END;

. -

97

<< CHECK IF A PACKET WAS RECEIVED >>
IF RCVFLAG = OK

THEN RCVTYPE :- INTEGER(RCVPACK(2)) << RETURN TYPE >>
ELSE RCVTYPE : NOTOK;

END; << SENDERRORFREE >>

<< SENDAFILE - SENDS A FILE TO THE REMOTE MACHINE USING A STOP-
AND-WAIT PROTOCOL WITH POSITIVE ACKNOWLEDGEMENT AND RETRANS-

* K MISSION.
ENTER THIS ROUTINE WITH THE FILE DESCRIPTOR (IE. THE FILE MUST
ALREADY BE OPENED) AND THE REMOTE MACHINE READY AND WAITING TO
RECEIVE THE FILE.

PROCEDURE SENDAFILE(FILENUM);

INTEGER FILENUM; << FILE DESCRIPTOR OF OPENED FILE TO SEND >>

BEGIN
BYTE ARRAY PACKET(O:PACKETSIZE); << PACKETS TO SEND >>
INTEGER PACKLEN; << LENGTH OF PACKETS >>
INTEGER DATALEN; << LENGTH OF DATA PORTION >>
INTEGER SEQNUM; << SEQUENCE NUMBER OF PACKETS >>
INTEGER ACIFLAG; << INDICATES IF PACKETS ARE BEING ACKED >>
INTEGER EOF; << END OF FILE FLAG >>
INTEGER TEMP; << TEMPORARY >>

<< INIT VARIABLES >>
-- SEQNUM := 1;

ACKFLAG : ACKFILE;
EOF :z FALS;

<< READ FIRST DATA RECORD >>DATALEN := FREAD(FILENUM, PACKET(6) ,-DATASIZE);

IF <> << EOF OR ERROR >>
THEN EOF := TRU;

<< XMIT PACKETS UNTIL END-OF-FILE >>
WHILE LOF z FALS AND ACKFLAO x ACKFILE DO

.BEGIN

<< ASSEMBLE AND SEND THE PACKET >>
ASSEM(DATAFILESEQNUM, DATALENPACKET,PACKLEN);
SENDERRORFREE(PACKET, PACKLENACKFLAG);

98

« GET NEXT DATA RECORD >>
DATALEN : = FREAD(FILENUMPACKET(6) ,-DATASIZE);
IF <> << EOF OR ERROR >>

THEN EOF i- TRU;

INCSEQ(SEQNUM);END; << WHILE >>

<< SEND 'ENDFILE', WAIT FOR ACK >>
ASSEM(ENDFILE, SEQNUM, 0, PACKETPACKLEN);
SENDERRORFREE(PACKET, PACKLEN, ACKFLAG);

<< SEND 'ENDREPLY', NO WAIT FOR ACK >>
INCSEQ(SEQNUM);
ASSEM(ENDREPLY, SEQNUM, 0 ,PACKET, PACKLEN);
SENDPACKET(PACKET, PACKLENTEMP);

END; << SENDAFILE >>

<< HP'IS'SOURCE - SENDS A FILE FROM THE HP TO THE REMOTE MACHINE
USING THE 'SENDAFILE' ROUTINE AFTER CHECKING TO MAKE SURE THE
FILE REALLY EXISTS. IF IT DOESN'T, IT SENDS A 'NAKFILE' TO
THE REMOTE MACHINE.
THE FILENAME PASSED AS AN ARGUMENT SHOULD END IN A t;I TO MAKE
THE FILE SYSTEM HAPPY. >>

PROCEDURE HP'ISSOURCE(FILENAME);

BYTE ARRAY FILENAME; << NAME OF FILE TO SEND >>

BEGIN
INTEGER FILENUM; << FILE DESCRIPTOR RETURNED BY FOPEN >>
BYTE ARRAY PACKET(O:20); << PACKET USED TO ACK OR NAK >>
INTEGER PACKLEN; << LENGTH OF PACKET >>
INTEGER XMITFLAG; << FLAG RETURNED BY 'SENDPACKET' >>

<< OPEN THE FILE, IF IT EXISTS >>
FILENUM :z FOPEN(FILENAME,7,O0,-DATASIZE);

IF < << ERROR, FILE NOT OPENED (DOESN'T EXIST) >>
THEN BEGIN << SEND 'NAKFILE' PACKET >>

* ASSEM(NAKFILE,0,0,PACKETPACKLEN);
SENDPACKET(PACKET, PACKLEN , MITFLAG);

99

iEND < THEN >>
ELSE BEGIN << SEND 'ACKFILE' AND SEND THE FILE >>

ASSEM(ACKFILE, 0,0, PACKETPACKLEN);
SENDD CVET(PACKET,PACKLEN,XMITFLAG);

- SENDAFILE(FILENUM);
FCLOSE(FILENUM, 0,0);

END; << ELSE >>

END; << HP'ISfSOURCE >>

<< RECVAFILE - RECEIVES A FILE FROM THE REMOTE MACHINE USING A
STOP-AND-WAIT PROTOCOL. ACKS ALL RECEIVED PACKETS AND SAVES
NON-DUPLICATED PACKETS.
ENTER THIS ROUTINE WITH THE FILE DESCRIPTOR (IE. THE FILE MUST
ALREADY BE OPENED) AND THE REMOTE MACHINE ALL READY TO BEGIN
SENDING DATA PACKETS. >

PROCEDURE RECVAFILE(FILENUM);

INTEGER FILENUM; << FILE NUMBER OF OPENED FILE IN WHICH
TO STORE THE INCOMING PACKETS >>

* BEGIN
- BYTE ARRAY PACKET(:PACKETSIZE); << RECEIVED PACKET >>

INTEGER PACKLEN; << LENGTH OF RECEIVED PACKET >>
* INTEGER RCVFLAG; << STATUS OF RECEIVED PACKET >>
* INTEGER PACKTYPE; << TYPE OF RECEIVED PACKET >>

INTEGER DATALEN; << LENGTH OF DATA PORTION >>
INTEGER SEQNUM; << SEQUENCE NUMBER OF PACKET >>
INTEGER EXPECTNUM; << EXPECTED SEQUENCE NUMBER >>
INTEGER DONEFLAG; << INDICATES WHEN FINISHED >>
INTEGER XMITFLAG; << FLAG RETURNED BY SENDPACKET >>

<< INIT. VARIABLES >>
PACKTYPE := DATAFILE;

- EXPECTNUM := 1;

S<< RECEIVE, ACK, AND STORE PACKETS UNTIL 'ENDFILEf RECEIVED >>
WHILE PACKTYPE z DATAFILE DO

"" BEGIN
L- RECVPACKET(PACKET, PACKLENRCVFLAG,TIMEOUT);

IF RCVFLAG z OK << PACKET RECEIVED OK >>
THEN BEGIN
DISASSEM(PACKET, PACKTYPE, SEQNUMDATALEN);

-*

100

<< IF DATA PACKET AND NOT A DUPLICATE >>
IF PACKTYPE = DATAFILE AND SEQNUM = EXPECTNUM

THEN BEGIN << SAVE PACKET AND INCREMENT EXPECTNUM >>
FWRITE(FILENUM, PACKET(6),-DATALEN,%320);
INCSEQ(EXPECTNUM);

END; << THEN >>

<< ACK THE PACKET >>
ASSEM(ACKFILE,SEQNUM, 0,PACKETPACKLEN);
SENDPACKET(PACKET, PACKLEN, XMITFLAG);

END; << THEN >>
END; << WHILE >>

<< PERFORM END-DALLY SEQUENCE OF PROTOCOL:
WAIT FOR IENDREPLYI (TO 'ACK' OF 'ENDFILE') OR TIMEOUT,
WHICHEVER COMES FIRST. TIMEOUT OR 'ENDREPLY' BOTH MEAN
DONE. IF RECV'ED PACKET IS 'ENDFILE', SENDER DIDN'T GET
LAST ACK, SO RETRANSMIT IT. >>

DONEFLAG := FALS;

WHILE DONEFLAG = FALS DO << WAIT FOR TIMEOUT OR ENDREPLY >>
BEGIN

RECVPACKET(PACKET, PACKLEN, RCVFLAG, TIMEOUT);
IF RCVFLAG a OK << SOME PACKET RECV'ED OK >>
THEN BEGIN << SEE WHAT KIND OF PACKET IT IS >>

DISASSEM(PACKET, PACKTYPE, SEQNUM, DATALEN);
IF PACKTYPE = ENDREPLY << GOT ACK, SO DONE >>
THEN DONEFLAG := TRU
ELSE BEGIN << RETRANSMIT THE ACK >>

ASSEM(ACKFILE, SEQNUM, 0 ,PACKET, PACKLEN);
SENDPACKET(PACKET, PACKLEN,XMITFLAG);

END; << ELSE >> "4
END << THEN >>
ELSE << TIMED OUT, SO DONE >> 71

DONEFLAG := TRU;
END; << WHILE >>

END; << RECVAFILE >>

<< HP'IS'DEST - RECEIVES A FILE FROM THE REMOTE MACHINE USING THE
'RECVAFILE' ROUTINE AND SAVE IT ON DISK. IF A FILE WITH THE
SAME NAME ALREADY EXISTS, THIS ROUTINE WILL RENAME THE FILE,

T.

" , .' I " ,.'" * ._.. .• ' -. ,'_, .. .:" " . .'... *. ... _ _ ._' . ' " • . . , - . - -. .. . -.

101

THEN SAVE IT.
THE FILENAME GIVEN AS AN ARGUMENT SHOULD BE TERMINATED WITH

- A 2;1 TO MAKE THE FILE SYSTEM HAPPY. >>

PROCEDURE HP'IS'DEST(FILENAME);

BYTE ARRAY FILENAME; << ?AME TO CALL RECEIVED FILE >>

BEGIN
INTEGER FILENUM; << FILE DESCRIPTOR RETURNED BY FOPEN >>
BYTE ARRAY PACKET(0:20); << PACKET USED TO ACK >>
INTEGER PACKLEN; << LENGTH OF PACKET >>
INTEGER XMITFLAG; << FLAG RETURNED BY ISENDPACKET' >>

<< OPEN THE FILE AS A 'NEW' FILE >>
FILENUM := FOPEN(FILENAME,%4,%1O1,-DATASIZE);

" IF > << COULDN'T OPEN THE FILE >>
CTHEN BEGIN

MOVE MSGB := "ETHERNET - CAN'T OPEN A NEW FILE";
PRINTOP(MSG,-32,O);

* END << THEN >>

ELSE BEGIN
<< ACK THE 'RECFILE' PACKET >>
ASSEM(ACKFILE,OOPACKET,PACKLEN);
SENDPACKET(PACKET,PACKLEN,XMITFLAG);

<< RECEIVE THE FILE >>

RECVAFILE(FILENUM);

<< CLOSE THE FILE AS A PERMANENT FILE >>

FCLOSE(FILENUM, 1 ,0);
IF <> << FILE NOT CLOSED >>
THEN BEGIN << RENAME THE FILE >>

RENAME(FILENUM, FILENAME);
-. FCLOSE(FILENUM,1,0);

END; << THEN >>
END; << ELSE >>

END; << HPfIS'DEST >>

-.,

.. . 1- .. n .. n ~ n u l I , m . .

102

<................. MAIN PROGRAM

<< MAIN PROGRAM (NETWORK DEMON) - LISTENS FOR A COMMAND PACKET ON THE
ETHERNET. IF TYPE OF PACKET IS ISENDFILE', IT CO1TAINS THE
NAME OF A FILE FOR THE HP TO SEND TO THE REMOTE MACHINE. IF THE
TYPE OF PACKET IS 'RECFILE', IT MEANS THE HP SHOULD PREPARE TO
RECEIVE A FILE FROM THE REMOTE MACHINE AND STORE IT WITH THE NAME IN
THE DATA PORTION OF THE PACKET. >>

<< INIT. CONTROLLER'S I/O PORTS, INIT. STATION ADDRESSES, ETC. >>
MOVE MSGB := "ETHERNET IS INITIALIZING";
PRINTOP(MSG,-24,O);
INITIALIZE;
RENAMENUM := 0; << INITIALIZE IT >>

<< LOOP FOREVER >>
WHILE TRU DO
BEGIN

<< WAIT FOREVER UNTIL A PACKET ARRIVES ON NET >>
RECVPACKET(COMPACK, COMLENGTH, RFLAG, NOTIMEOUT);

IF RFLAG = OK << PACKET RECV'ED OK >>
THEN BEGIN

<< DISASSEMBLE THE PACKET >>
DISASSEM(COMPACK, COMTYPE, COMSEQNUM, NAMELEN);

<< TERMINATE FILE NAME WITH A t;' FOR THE FILE SYSTEM >>
COMPACK(COMLENGTH) :z ";";

<< SEND OR RECEIVE THE FILE AS APPROPRIATE, SUPPLYING THE >>
<< FILE NAME AS AN ARGUMENT >>
IF COMTYPE = RECFILE

THEN HP'ISDEST(COMPACK(6))
ELSE

IF COMTYPE z SENDFILE
THEN HP'IS'SOURCE(COMPACK(6))
ELSE BEGIN << ERROR >>
MOVE MSGB :a "ETHERENT - RECEIVED UNKNOWN COMMAND";
PRINTOP(MSG,-35,O);

END; << ELSE >>
END; << THEN >>

END; << WHILE >>

* * .-

7-7-

* 103

UEND. << MAIN >

ti

10O4

Appendix 5

Listing of STABTNET.LILJA.SYS

.17

105

* p IJOB E1IIERNET.SYS
* IPREPJIUN ETHERRUN.LILJA.SYS; CAPuPM

IEOJ

106

REFERENCES

1. A. S. Tanenbaum, Cmputer Networks, Prentice-Hall, Englewood
Cliffs, NJ (1981).

2. H. J. Saal, "Local Area Networks: Possibilities for Personal Com-
puters," BDTE, Vol. 6, (10) p. 92 (October 1981).

3. R. M. Metoalfe and D. R. Boggs, 'Ethernet: Distributed Packet
Switching for Local Computer Networks," --unitiona a the ACK,
Vol. 19, (7) pp. 395-404 (July 1976).

4. N. Binder, R. Abramson, and F. Kuo, "Aloha Packet Broadcasting - A
Retrospect,* Proceeding at Zba A.IPS hofLna~b Goapator Con.fgnteat,
pp. 203-215 (June 1975).

5. J. A. Ayala, Dnaia and Constructn an Ethernet CoMaunRatLgona
%" C fX= A kNl-homgenama Envirgan, Computer Systems

Group report CSG-5, Coordinated Science Laboratory, University of
Illinois at Urbana-Champaign, (July 1982).

6. B. W. Kernighan and D. M. Ritchie, 33M f, rgrAMi n Iangwgg, Bell
Laboratories, Englewood Cliffs, NJ (1978).

7. K. Thompson and D. M. Ritohie, UNIX 1rom---a-r'a Manual, Bell
Laboratories (January 1979). Seventh Edition.

8. vzaJmWa PramLU Ia2gUag Refrence ManMl, Hewlett-Packard Com-
pany, Santa Clara, CA (1976). Second Edition.

9. H Refere ManatJ, Hewlett-Packard Company, Cuper-
tino, CA (January 1981). Third Edition.

10. E. C. Eschenauer and V. Obozinski, 'The Network Communication
Manager: A Transport Station for the SGB Network," Computer ItL-
works, Vol. 2, (4) pp. 236-249 (September 1978).

11. SyAtem Maler/Sstem Suprvior BL e kermnn-a Maual, Hewlett-Packard
Company, Cupertino, CA (1979). Third Edition.

12. J. F. Shoch and J. A. Hupp, "Measured Performance of an Ethernet
Local Network,' LnQa Area Nenuntgatlona Ietwork AU22ALM, (May
1979).

